

Projektverwaltung
5

StormC User Manual

1

◆

StormC

The professional choice

Users manual

ANSI C/C++ Development-
system for the Amiga

C

OPYRIGHT

◆

Copyright

STORMC C/C++ DEVELOPMENT SYSTEM

Software and manual

(c) 1995-1999 HAAGE & PARTNER Computer GmbH

Authors:
Jochen Becher
Editor
Project Manager
Debugger
Profiler
Libraries
Librarian
ScreenManager
Wizard.Library

Jens Gelhar
ANSI C Compiler
C++ Compiler
PPC-Frontend
pOS-Compiler

Michael Rock
Optimizing Linker
Patcher
FD2PRAGMA
PPC-Backend

Markus Nerding
Jeroen T. Vermeulen
Wouter van Oortmerssen
Peter-Frans Hollants
Georges Goncalves
Kersten Emmrich
Manual Translation

Peter (dreamy) Traskalik
Hartwig Haage
Graphics

All rights reserved. This manual and the accompanying
software are copyrighted. They may not be reproduced in
any form (whether partically or in whole) by any means of
procedure, sent, multiplied and/or spread or be translated
into another language.

HAAGE & PARTNER assumes no responsibility for damage,
caused by or resulting from malfunction of the program,
faulty copies or error in the manual are to be led back.

Copyrights and trademarks:

Amiga is a registered trademark of its owner.

Amiga, AmigaDOS, Kickstart and Workbench are trade-
marks.

SAS and SAS / C are registered trademarks of the SAS Insti-
tute Inc.

The designation of products which are not from the HAAGE
& PARTNER COMPUTER GmbH serves information purpo-
ses exclusively and presents no trademark abuse.
2 StormC - the professional choice

Licensee agreement

◆

LICENSEE AGREEMENT
1 In general
(1) Object of this contract is the use of computer programs from the HAAGE & PART-

NER COMPUTER GmbH, including the manual as well as other pertinent, written
material, subsequently summed up as the product.

(2) The HAAGE & PARTNER COMPUTER GmbH and/or the licensee indicated in the
product are owners of all rights of the products and the trademarks.

2 Right of usufruct
(1) The buyer does receive a non-transferable, non-exclusive right, to use the acquired

product on a single computer.

(2) In addition the user may produce one copy for security only.

(3) The buyer is not allowed, to expel the acquired product, to rent, to offer sub-licen-
ses or in any other ways to put it at the disposal of other persons.

(4) It is forbidden to change the product, to modify or to re-assemble it. This prohibi-
tion includes translating, changing, re-engineering and re-use of parts.

3 Warranty
(1) The HAAGE & PARTNER COMPUTER GmbH guarantees that up to the point in

time of delivery, the data carriers are physically free of material and manufactu-
ring defects and the product can be used as described in the documentation.

(2) Defects of the delivered product are removed by the supplier within a warranty
period of six months from delivery. This happens through free replacement or in
the form of an update, at the discretion of the supplier.

(3) The HAAGE & PARTNER COMPUTER GmbH does not guarantee that the product
is suitable for the task anticipated by the customer. The HAAGE & PARTNER
COMPUTER GmbH does not take any responsibility for any damage that may be
caused.

(4) The user is aware that under the present state of technology it is not possible to
manufacture faultless software.

4 Other
(1) In this contract all rights and responsibilities of the contracting parties are regula-

ted. Other agreements do not exist. Changes are only accepted in written form
and in reference to this contract and have to be signed by both parties.

(2) The jurisdiction for all quarrels over this contract is the court responsible at the
seat of HAAGE & PARTNER COMPUTER GmbH

(3) If any single clause of these conditions should be at odds with the law or lose its
lawfulness through a later circumstance, or should a gap in these conditions
appear, the unaffected terms will remain in effect. In lieu of an ineffective term of
the contract or for the completion of the gap an appropriate agreement should be
formulated which best approximates within the bounds of the law the one that
the contracting parties had in mind as they agreed on this contract.
StormC User Manual 3

P

REFACE

◆

(4) Any violation of this licence agreement or of copyright and trademark rights will
be prosecuted under civil law.

(5) The installation of the software constitutes an agreement with these license condi-
tions.

(6) If you should not agree with this license agreement you have to return the product
to the supplier immediately.

June 1996
Preface
4 StormC - the professional choice

Preface

◆

PREFACE
“We develop to PowerUp the AMIGA.“
Here it is at last - a new compiler system that gives you the
ability to develop powerful applications for the Amiga more
easily, efficient and very fast. It is a completely new
development system that gives you the tools you have been
missing on the Amiga for a long time. New concepts and a
look forwards into the future.

Some a 18 months ago we asked ourselves: why is there no
development system for the Amiga that beats those of other
platforms such as CodeWarrior (Macintosh) or BorlandC++.
These programs make it so easy to create good programs. So
we started to look for good people who could realise this
vision. After a short time we found them:

Jens Gelhar: He did the first C++ compiler for the Amiga in
1992. Now he puts all his experience into the StormC
compiler.

Jochen Becher: He is one of the founders of HAAGE &
PARTNER. He did his first compiler some years ago. Then he
programmed a source-level debugger for a C++ compiler
and one of the first C++ Class Libraries for the Amiga.

He is the Project Manager of StormC and he is the father of
StormShell and the project manager.

Michael Rock: He too has been programming on the Amiga
for a long time. He is responsible for the very fast and very
compatible StormLINK - StormC’s linker. Now he is
working on the PowerPC code generation as well.

Besides these guys many others did a good job of suppor-
ting StormC during development. There are assistant
programmers, beta testers, many programmers using the
demo version and reporting their wishes to us and the
customers who always encouraged us to do a little more ;-)

We released the International version of StormC to make its
power available to every Amiga programmer. Now it is up
to you to “PowerUp the AMIGA“ with your fine programs.

We are now working on the next step towards the future:
the PPC version of StormC for the new PowerAMIGA.
StormC User Manual 5

P

REFACE

◆

Now we want to thank our beta testers and all the people
who supported us during the development of StormC.

Thank you very much:

Olaf Barthel
Holger Burkarth
Thomas Bayen
Bernhard Büchter
Jan-Claas Dirks
Mario Kettenberger
Alexander Pratsch
Michael Rock
Jürgen Schildmann
Stephan Schüerholz
Thomas Wilhelmi
Heinz Wrobel

Special thanks to Jeroen T. Vermeulen.

Particular thanks goes to Gudrun Volkwein, Bernadette
Becher and Hartwig Haage.
6 StormC - the professional choice

Technical support

◆

TECHNICAL SUPPORT
In case of problems concerning StormC you should:

1. Check your installation for completeness and read the
ReadMe file.

2. Check the installation of your operating system for
completeness and verify that all relevant parts contain
the right version numbers (at least OS 3.0).

3. Check programs that are running in the background.
There might be some software running on your Amiga
that will interfere with StormC. In particular some
tools and patches, which are loaded in the Startup
sequence, can considerably affect the mode of opera-
tion. Try starting your Amiga without these programs,
to be sure that they are not the cause of the trouble.

4. Please keep your Registration number handy.

5. Write down the version number of StormC (“About“
window) and the version numbers and build dates of
components (Storm.Library, StormC, StormCPP, Stor-
mEd, StormLink, StormRun, StormShell). You get
them by typing the command

version “file name“ full

in CLI or Shell.

6. Please note your hardware and software configuration
too.

7. If you think that your problem is caused by an error of
StormC then please try to narrow down the error to
the smallest possible piece of your code and send it to
us (by mail or e-mail).

You can tell us your problems through many channels:

Internet: storm-support@haage-partner.com

Contacting us by e-mail is most convenient to handle for
us. We can forward your problems to the developers very
easily. If you could send us a code segment containing the
error, this would certainly speed up the process of fixing the
StormC User Manual 7

P

REFACE

◆

bug tremendously. Via e-mail we can respond to your
message very easily or send you an individual patch or
advoice. Please use e-mail if at all possible.

WWW homepage: http://www.haage-partner.com

On our homepage on WWW on Internet you will find the
current information on StormC. Here we also have a special
support area with hints, patches, bug fixes and a lot of
information about StormC.

HAAGE & PARTNER Computer GmbH
Schlossborner Weg 7
61479 Glashuetten
Germany

Tel: ++49 - 61 74 - 96 61 28
Fax: ++49 - 61 74 - 96 61 01

The Hotline is occupied from Monday through Friday from
3:00pm to 7:00pm o’clock. Please be prepared with the
information the support-staff members will need. This will
speed up the solution of your problems.

We prefer Support in writing because some problems can’t
be solved by phone, so we recommend the use of e-mail,
fax or normal mail.
8 StormC - the professional choice

Table of contents

◆

COPYRIGHT 2
STORMC C/C++ DEVELOPMENT SYSTEM 2

Licensee agreement 3

PREFACE 4
Preface 5

“We develop to PowerUp the AMIGA.“ 5

Technical support 7

1 WELCOME 19
AMIGA IS BACK FOR FUTURE. 19

If you don’t like manuals 19

If you are familiar with C and C++ 19

If you never worked with a compiler nor did any programming in
C 20

2 INSTALLATION 21
OVERVIEW 22

Before you install 22
Localization 22

Installing with low memory 23

Full installation 24
Novice User: 24
Intermediate User: 24
Expert User: 24

Selecting the installation directory 25

Installing an update 26

Removing StormC 26
Custom files in the StormC drawer 27
After Installation 27
Troubleshooting the Installation 27
Correct StormC installation 27
StormC User Manual 9

T

ABLE

OF

CONTENTS

◆

3 FIRST STEPS 29
BEFORE YOU BEGIN 30

Running the program 30
StormShell 30
StormC 31
StormLink 31
StormEd 31
StormRun 31
StormASM 31

Toolbar access 32
Keyboard control 32
The icon bar offers the following functions: 32

THE CONCEPT OF PROJECTS 33
The simple way 33

An easier approach through batch files 33

STORMC’S PROJECT MANAGEMENT 34

Creating a new project 34

What is a project? 35

Make and module dependencies 35

Saving the project and creating a new directory 35

Adding files to the project 37

Automatic Usage of Preferences 37

Specifying the program’s name 38

Saving the project 38

Creating a source file 39

Adjusting settings 40

Compiling the source code 40

Running the translated program 42

Console output 42

4 PROJECT MANAGER 45
OVERVIEW 47

Some words about the startup 47
10 StormC - the professional choice

Table of contents

◆

Tooltypes 47
The ScreenManager 48

Memory usage 51

Settings 51
Automatic storage 52
Automatic storage of unnamed files 53
Automatic backup copy 53
Selecting text font 53

ORGANISATION OF A PROJECT 55
Creation of a new project 55

Setup of projects 56

Project Sections 56

Adding Files 57
Adding Sources 58
Add Window 58
Adding Libraries 58
Choosing a program name 59

Drag&Drop 59

Controls of the Project Window 59
Folding of Sections 60
Showing Sources 60
Starting a Program 60
Open a Child Project 61

Keyboard control 61
Cursor keys 61
Return 61

Deleting Items of a Project 61

Organising files of a project 61
Project specific headers 62
Documentation, scripts ... 63

Makescripts 63

Passing arguments to makescripts 66
Assembler scripts 67

Saving of the paths 69

PROJECT SETTINGS 70
Paths and global settings 70

Include path 71
StormC User Manual 11

T

ABLE

OF

CONTENTS

◆

Header Files 71
Working memory - Workspace 72

Definitions and Warnings 72

ANSI-C/C++ Settings 74
Source 74
Template Functions 74
Exceptions 75
Debugger 76
Code Generation 76
Processor Specific Code Generation 77

Quality of the Optimisation 78
Optimising 78

Compiler Warnings 80
Standard of the language 80
Security 81
Optimisation 81

Path Settings and Linker Modes 82
Generation of Programs 82
Library Path 84
Warnings 84
Optimiser 84

Hunk Optimisations and Memory Settings 85
Summarise Hunk 85
Manner of Memory 86
ROM Code 86

Call of the executable program 87
Execute Environment 87
Start From CLI 87
I/O Settings 88
Input/Output 89

Save Project 89

5 STORMED 91
IN GENERAL 93

New text 93

Controls of windows 93

Open / Load Text 94
Tooltypes 94
12 StormC - the professional choice

Table of contents

◆

Save Text / Save Text As ... 94

Free Text 94

Options of Text 95
Tabulations and Indents 95
Indent ahead and behind of brackets 96
Dictionaries and Syntax 97
Dictionaries 97
Syntax 98
Colour Settings 99
File Saving Settings 99
Saving the Settings 100

Keyboard Navigation 100
Cursor-Keys 100
<Return>, <Enter>, <Tab> 100

Undo / Redo 100

Block Operations 101
Mark, Cut, Copy and Paste 101

The Mouse 102

Find and Replace 102
Direction 103
Mode 103
Ignore Upper/Lower Case 103
Ignore Accent 103
Find 103
Replace 104
Replace All 104

6 COMPILER 105
SPECIAL FEATURES OF STORMC 107

DATA in Registers 107

Parameters in Registers 108

Inline Functions 108

The Pragma instructions 110
Data in Chip and Fast RAM 110
AmigaOS Calls 111
The #pragma tagcall 111

The #pragma priority 112
Constructors and Destructors in ANSI C 113
StormC User Manual 13

TABLE OF CONTENTS
◆

Constructors and Destructors in C++ 113
Priority list 113

Joining Lines 114

Predefined symbols 115

Build your own INIT_ and EXIT_ routines 117

Use of Shared libraries 117
Prototypes 117
Stub Functions 118
#pragma amicall 118
Forced opening of a Amiga library 122

PROGRAMMING OF
SHARED LIBRARIES 123

The Setup of a Shared Library 123
The #pragma Libbase 124
Register Setup 124
Shared Library Project Settings 125
The setup of FD files 125
The first four Functions 126
Home-made Initialisation and Release 127
Important hints to Shared libraries 128

PORTING FROM SAS/C TO STORMC 130
Project settings 130

Syntax 131

Keywords 131

CLI VERSION OF THE COMPILER 134
The instruction 134

Options 134
Assembler source 136
Pre-processor: Definition of symbols 136
 Pre-processor: Include files 137

Compiler mode 137
ANSI C or C++ 137
Exception handling 137
Creation of Template functions 138

Code creation 138
Data model 138
Code model 138
14 StormC - the professional choice

Table of contents
◆

Optimisations 138
Code for special processor 140
Code for linker libraries 141

Debugger 141
RunShell 141
Symbolic debugger 141

Copyrights 141

Warnings and errors 141
Format of the error output 141
Colours and styles 142
Error file 142
Optional warnings 143
Treat warnings like errors 144
Core memories 144
Pre-compiled header files 144

Summary 145

7 THE DEBUGGER 149
GENERAL INFORMATION

ON RUNSHELL 151
The StormC Maxim 151

A Resource-Tracking Example 152

Freeze the program temporarily 153

Halting the program 154

Changing the task priority 154

Sending signals 154

USING THE DEBUGGER 157
The Variable Window 159

Temporary Casts 161

Changing Values 161

Sorting of Variables 161

THE PROFILER 164
Profiler technical information 167

REFERENCE 169
StormC User Manual 15

TABLE OF CONTENTS
◆

Control Window 169
Status line 169
“Program Stops At Breakpoint“: 169
“Continue Program“: 169
“Program waits for ...“: 169
Debugger icons 169
Go to next breakpoint 170
Step in (single step) 170
Step over (single step, but execute function calls without stopping) 171
Go to the end of the function. 171
Show Current Program Position 171
Pause 172
Kill 172
Priority gadgets 172
Signal group 172
Protocol gadgets 172
Window close gadget 173

Current variable window 174

The module window 177

The function window 178

The history window 178

The breakpoint window 179

The address requester 180

The hex editor 181
Choosing the display 181
The address string gadget 181
The address column 181
The hexadecimal column 181
The ASCII column 181
Keyboard control 182
The scrollbar in the hex editor 182

8 THE LINKER 183
THE LINKER,

THE UNKNOWN CREATURE 185
A first example 185

ANSI-C Hello World 185

Startup Code 186
16 StormC - the professional choice

Table of contents
◆

Usage 189

Parameters 189

Memory classes 191

Compatibility 200

Error Messages 200

Error Messages 201
Unknown symbol type 201
16-bit Data reloc out of range 201
8-bit data reloc out of range 201
Hunk type not Code/Data/BSS 201
16-bit code reloc out of range 201
8-bit code reloc out of range 201
Offset to data object is not 16-bit 201
Offset to code object is not 16-bit 202
Offset to data object is not 8-bit 202
Offset to code object is not 8-bit 202
Data- access to code 202
Code- access to data 202
InitModules() not used, but not empty 202
CleanupModules() not used, but not empty 203
File not found 203
Unknown number format 203
Symbol is not defined in this file 203
Nothing loaded, thus no linking 203
Can not write file 203
Program is already linked 204
Overlays not supported 204
Hunk is unknown 204
Program does not contain any code 204
Symbol not defined 204
Symbol renamed to _stub 204
_stub is undefined 205
32-Bit Reference for Symbol 205
32-bit Reloc to Data 205
32-bit Reloc to BSS 205
32-bit Reloc to Code 205
32 Bit Reference for symbol from FROMFILE to TOFILE 205
Jump chain across hunk > 32 KByte not possible 205
More than 32 KByte merged hunks 205
Illegal access to Linker-defined Symbol 205
Fatal errors : aborting 206
Hunk_lib inside Library ?? 206
Hunk_Lib not found 206
StormC User Manual 17

TABLE OF CONTENTS
◆

Wrong type in Library 206

Predefined values 206
Symbols for data-data relocation 208
Hunk Layout 208
Memory Classes 208

Order of Searching for Symbols 209

Hunk Order 209

Near Code / Near Data 209
18 StormC - the professional choice

Welcome
1 ◆
1 Welcome

e thank you for buying this development system. Be assured that this was
the right decision. StormC is the best tool to speed up your software
development, to make it more comfortable and easy.

With StormC we give you a tool for the future of the Amiga. With the help of StormC
you can build applications of outstanding quality that help assure the persistence of the
Amiga.

After working a while with StormC you will never understand how you ever did without
it. We put all our experience into it and development is still going on. Next step is the
PowerPC version for the PowerAmiga. Then you will be one of the first who’s
applications will run in PPC native code. And then

AMIGA IS BACK FOR FUTURE.

If you don’t like manuals
Are you somebody who never reads a manual? So working with computers must be
inborn. Congratulations!

In most cases there will be a problem that you can not solve on your own. You could
phone us to get the answer, but you can also have a look at the manual. If you are a
beginner you should work through the basics. Read the first chapters about the editor,
project manager, and compiler. Use the rest as a reference and work through it if you
need to. If you still have questions, you can contact us then. This will work best for all
of us. :)

If you are familiar with C and C++
In this case you should have a look at the concepts of StormC. You will only will get the
best out of you programming system by knowing the details.

W

StormC User Manual 19

1 WELCOME
◆

If you never worked with a compiler nor did any
programming in C
Then StormC is best for you. One of our main goals was to design a development system
that makes programming easier. So we did an integrated system where you don’t need
to care about the individual parts. You simply type your source into the editor and then
hit “Run“ and the rest will be done by StormC: saving, compiling, linking, running. We
recommend that you try out “First Steps“. There you will get the basics of StormC. Later
you should work through the first chapters of the manual: editor, project manager,
compiler. Later you should read through the other chapters as well to get an overview of
the possibilities of StormC.
20 StormC - the professional choice

Installation
2

StormC User Manual 21

◆
2 Installation

his chapter describes how to install StormC on your hard disk. To avoid
installation problems you should proceed the installation step by step as
described here.

OVERVIEW ... 22

Before you install .. 22
Localization .. 22

Installing with low memory ... 23

Full installation .. 24
Novice User: .. 24
Intermediate User: .. 24
Expert User: .. 24

Selecting the installation directory ... 25

Installing an update ... 26

Removing StormC ... 26
Custom files in the StormC drawer ... 27
After Installation .. 27
Troubleshooting the Installation .. 27
Correct StormC installation .. 27

T

2 INSTALLATION
◆

OVERVIEW
To guide you through the installation, Commodore’s
Installer will be used. It has become the standard application
for this purpose. You should have no problems using it.

Before you install
StormC is shipped on a set of disks or a CD. Please put the
first disk into your disk drive or the CD into your CD-ROM
drive.

You can find
information on
the memory

usage of the system in a file
called “Readme“ on the
disk. This file also contains
information about recent
changes since the manual
was printed.

Before you install make sure that there’s enough space on
your hard disk for StormC. Otherwise the installation can be
interrupted.

After you insert the disk or the CD, double-click the drive’s
icon, and a window similar to the following illustration is
shown on your monitor.

Localization
Depending on which language you prefer you can decide
whether the installation should occur in the German or
English language. This setting does not affect StormC’s
localization settings. Both choices offer you the possibility to
install one or more localization catalogues.
22 StormC - the professional choice

Installing with low memory
◆

Starting the installation
Double-click one of the
icons. Soon the installer’s
window will open.

Installing with low memory
Even if there’s only a little space left on your hard disk you
can still install StormC. In this case run the Installer in
Expert Mode. You will then be asked to confirm the
installation of every part of the package.

The following components are required for StormC and
should be installed:

Include (dir)
- all Includes except for the "Proto" and "Pragmas"

drawers Lib (dir)
- Storm.lib
- Amiga.lib

StormSYS (dir)
- Appmanager.library
- StormC
- StormCPP
- StormEd
- StormEdGUI.wizard
- StormLink
- StormShell
- StormShellGUI.wizard
- (StormRun)
- (StormRunGUI.wizard)

LIBS: (dir)
- wizard.library

You don’t necessarily need to install the run time system and
the debugger. However this also gives you the possibility to
run and debug your programs right out of the compiler
environment.

You may of course leave off the entire environment and
proceed with an even smaller installation. The StormSYS
drawer should then contain these programs:

StormSYS (dir)
- StormC
- StormLink

Normal Installer-Icon

Selected Installer-Icon
StormC Usermanual 23

2 INSTALLATION
◆

Full installation
After starting, the installer’s window appears with
information about its version number and date. At the
bottom you can see two gadgets. Click on "Continue" and
the next page of the installation will appear where you can
choose settings concerning the installation process. A click
on "Abort installation" and answering "Yes" at the "Are
you sure?" prompt will quit the installation. These two
gadgets will guide you on every page of the installation
process.

The second page allows you to set parameters affecting the
entire installation process.

If there is already
an old
installation on

your Amiga it will be
replaced in novice mode
without further information.

Novice User:
In this mode everything is automated. After selecting the
drive to install to a complete installation will be performed.
You will only be asked to change disks, if necessary.

Intermediate User:
This mode gives you more control over the installation. The
installer detects a previously existing installation and asks
you if you want to reinstall from scratch, install an update
or remove the old installation.

Expert User:
The expert mode gives you nearly full control over the
installation. This is useful if you don’t want to install the full
package but just parts of it.
24 StormC - the professional choice

Selecting the installation directory
◆

Each time the installer is about to copy something you will
be shown a list of files. Only the files you select will actually
be copied. Furthermore this page allows you to change the
destination path. This is, however, not advised, as it makes
little sense. The complete installation, except for some tools
and configuration files, will be done in a single directory
("Drive:StormC") and should not be spread around
manually to multiple directories.

This prompt only exists in the “Intermediate User“ and
“Expert User“ modes, and only if there’s already an existing
installation, including the first StormC Preview, and the
current demo versions. For more information refer to
"Installing an Update" and "Removing StormC".

The installer will
create a directory
“StormC“ on the

selected drive or in the
selected path. Diskette
drives and the RAM disk are
not allowed as destinations.

Selecting the installation directory
When installing from scratch you select a drive or directory
where the StormC file will be stored.

After selecting
the destination
path, the file

"Readme" will be copied
and displayed. You should
read about recent changes
since the manual was
printed during the
installation process.

Click on "Show drives" if you don’t want to install on the
currently displayed drive, which is the default destination.
Then click on a drive in the list shown.

Select "Create a new drawer" if you wish to create a new
drawer inside the directory currently shown. However, keep
in mind that the installer will automatically create a
“StormC“ drawer and copy all files there.

"Parent drawer" takes you one level back in the directory
structure.
StormC Usermanual 25

2 INSTALLATION
◆

Select "Continue" when the installation location is okay.

Depending on the user level chosen, the installation is
performed automatically. We do not recommend changing
the destination for parts of the package.

During an
update, all files
you modified

(e.g. includes, demos and
preferences) will be over-
written. You should
therefore create a backup of
your changes prior to
updating and restore it
afterwards.

Installing an update
The installer automatically recognises if there’s already an
existing version of StormC on your hard disk. It will notify
you (see the illustration on the previous page) and offer to
reinstall from scratch, install an update or remove the old
installation completely.

When updating, you, of course, won’t be asked where to
install since the old location is already known.

In “Novice User“ mode the old installation will be
overwritten without further inquiry.

In “Intermediate User“ mode the installer will check before
unpacking whether the current file already exists and
prompt whether it should be overwritten. With parts
consisting of multiple files the installer will not ask to
replace each file.

The “Expert User“ mode guarantees full control over the
Update installation. Files will be temporarily unpacked into
RAM:, and you will then be asked for every single file to be
copied.

Removing StormC
We regret if you wish to remove your StormC installation
from your hard disk, but it will be mentioned here anyway.

Only files copied
during the
StormC

installation will be removed.

You will, of course, only have the possibility to remove the
installation if the installer detects it.

Depending on the User level chosen, you will be asked for
each file whether or not you want to remove it.

As only a few files are required outside the StormC drawer, a
manual deinstallation should be no problem. The icons for
the editor files and project management are removed from
the "ENVARC:" and "ENV:" directories. The StormScreen-
Manager is removed from your hard disk’s "WBStartup"
drawer. Of course, the Assignment in your "User-Startup"
26 StormC - the professional choice

Removing StormC
◆

will be removed, otherwise you would get an error message
during the next reboot of your system, that the drawer does
not exist anymore.

Custom files in the StormC drawer
Of course, StormC will not be removed if the Installer detects
custom files in it. You will be notified of this and need to
move these files somewhere else on your harddisk and delete
the "StormC" drawer yourself.

After Installation
If you did not fill out the registration card yet this is the best
time to do so. You should by all means register so that we can
inform you regularly about updates and upgrades.

Troubleshooting the Installation
If you have followed the listed instructions, you should have
no problems during the installation. It is, however,
impossible to predict when a file or even a complete disk is
damaged. If only one, or just a few files are damaged, the
installation may be performed manually.

Please inform us as soon as possible about the damage. We
will then send you a replacement disk.

To allow you to continue working with the compiler system
the following list gives you information about the files and
their required location.

Correct StormC installation
On the first StormC disk you can find a list of the files of a
complete StormC installation.
StormC Usermanual 27

2 INSTALLATION
◆

28 StormC - the professional choice

First Steps
3

StormC User Manual 29

◆
3 First Steps

very C-compiler’s introduction begins with the “Hello World“ program, so
will we.

With this simple example we want to show you the first steps you are waiting for. You
will learn how to create a simple project, to write new source, to run the compiler, and,
finally, to run the program.

BEFORE YOU BEGIN ... 30

Running the program .. 30

Toolbar access ... 32
Keyboard control .. 32
The icon bar offers the following functions: .. 32

THE CONCEPT OF PROJECTS ... 33

The simple way ... 33

An easier approach through batch files .. 33

STORMC’S PROJECT MANAGEMENT .. 34

Creating a new project ... 34

What is a project? ... 35

Make and module dependencies ... 35

Saving the project and creating a new directory 35

Adding files to the project .. 37

Automatic Usage of Preferences ... 37

Specifying the program’s name .. 38

Saving the project ... 38

Creating a source file ... 39

Adjusting settings ... 40

Compiling the source code .. 40

Running the translated program ... 42

Console output ... 42

E

3 FIRST STEPS
◆

BEFORE YOU BEGIN
The following instructions assume that you have
successfully installed StormC and rebooted your system. If
you didn’t, please go back and read Chapter 2: Installation.

Running the program
Please start StormC with a double-click on its icon (see the
marginal illustration). You can find the icon in the drawer
in which you installed StormC.

After starting, you will see a Welcome message which
remains until all of StormC’s components are loaded. If your
Workbench has more than 32 colours you will see a
Welcome picture as shown below.

The following programs, which belong to the compiler
environment, will be run:

StormShell
The StormShell unifies the different parts of the compiler
environment. It is responsible for important jobs such as
project management, without which programs consisting of
multiple modules would not be possible.
30 StormC - the professional choise

Running the program
◆

Due to the
integration in the
compiler

environment you won’t
notice that it consists of
multiple programs. The
communication between
the parts occurs using an
ARexx port which, as
another benefit, offers very
flexible interfaces to other
programs.

StormC
The compiler is the heart of the StormC developing
environment. The compiler accepts both ANSI-C and C++
sources and performs optimisations as well. It supports
current ANSI standards and all features of the AT&T version
3.0 compiler systems (CFRONT).

StormLink
This amazingly fast linker is the interface to other compiler
systems. It is able to process link libraries from the SAS/C and
MaxonC++ compiler environments. This feature allows you
to use all common libraries in your programs.

StormEd
We are sure that you will soon appreciate our editor’s two
major features. Colorization of strings, comments, constants
etc. helps you to quickly and efficiently locate and remove
bugs. The included lexicon covers all functions and structure
names used on the Amiga. Because of the colorization you
will notice immediately whether an entered function name
is correct.

Another feature is the Editor’s usage for debugging purposes.
When you start the debugger, already open windows and
functions will be reused. You can continue working with the
Editor as usual. Only the breakpoint column at the left and
the brightly rendered display of the program counter will
remind you that you’re currently debugging your program.

StormRun
StormRun contains the Source-Level-Debugger and the code
necessary to allow your programs to run from within the
development environment. It is also responsible for
Resource Tracking.

StormASM
StormASM is not a complete Assembler, but an interface to
an external Assembler, PhxAss. Its demo version and
documentation are included.

StormC’s major controls will be displayed as soon as it is
loaded. The icons allow for access to the compiler’s most
important functions.
StormC User Manual 31

3 FIRST STEPS
◆

Some “Sun-
Mouse tools“
may cause

problems when the help line
is rendered. To fix this bug
we have supplied the
program “MagicMenuFix“.
During the installation you
will be asked whether you
wish to install it in your
WBStartup drawer. Refer to
the “Readme“ file for more
information.

Toolbar access
Their accessibility through the icon window makes these
functions instantly available. A single click on an icon is
enough to cause the associated function to be executed. As
you have certainly already noticed a help line gives you
details about these functions.

This feature is particularly important when you are just
beginning to use StormC. You will soon ignore the help line
more often and remember the functions associated with the
icons. You will find the help also in other parts of the
environment where icons are used.

Keyboard control
The icon’s functions are also accessible using the function
keys. <F1>-<F3> are used for the text functions, <F4>-<F6>
for the project functions and <F8>-<F10> for the compiler
and debugger functions.

The icon bar offers the following functions:

New sourcewindow
Load source

Save source

Make and debug
Make and run

Make

New project
Load project

Save project

Helpline
32 StormC - the professional choise

The simple way
◆

THE CONCEPT OF PROJECTS
Before we start writing and compiling source code I’d like to
discuss some basic aspects of writing programs.

The simple way
With a “traditional“ compiler system you would start a text
editor, enter the source code, save it and run the compiler.
Additionally, you would perhaps also specify extra options,
or use the default settings, perhaps kept in an environment
variable.

The compiler would then create an object file, and you
would run the Linker to get an Executable. Finished!

An easier approach through batch files
It would be easier if you created a batch file containing the
commands you previously entered manually. After a change
to the source code you’d then only need to run the batch file.

This ease would be clearly perceptible, which results in
higher turn-around times and thus in a higher programming
efficiency.

This approach has no disadvantages as long as you’re only
working with a single source file. As soon as you integrate
two or more source files into the batch file, every time you
call it you would have all source files compiled - regardless
of whether a source file has been changed or not.

Thus, the turn-around times would always stay the same.
With some little expense it would be possible to check
whether a source file is newer than its associated object file
but that would be all you could do in a justifiable amount of
time.

Another major aid in this case is a so-called Make program
which only passes modified source files to the compiler and
also supports dependencies. For details about Make refer to
chapter 4 for a more intensive discussion.
StormC User Manual 33

3 FIRST STEPS
◆

StormC basically
works with
projects. Source

files can only be compiled
when they’re part of a
project. Read the following
introduction step by step
and you will learn about the
simple usage of projects.

STORMC’S PROJECT MANAGEMENT
Similar to batch files, a StormC project contains a list of files
and settings. This is, however, created visually, which makes
it easier to use and to understand. A StormC projects unifies
all parts belonging to a program so that they can be managed
centrally. This includes files which do not don’t directly
affect the creation of a program, such as AmigaGuide
documents, and ARexx and Installer scripts.

The project manager has similar properties to a Make
program and reacts accordingly when multiple source files
are used. Dependencies between source files and header files
are also no problem.

Creating a new project
The most important step to compile a source file using
StormC is to create a new project. Source files can’t be
compiled without being associated with a project. This may
appear to be a limit at first, but will save you a lot of trouble
later on. Creating a project is really simple and helps to keep
your programming efforts ordered.

Please click on "New project" in the icon bar. A new project
window will be displayed.
34 StormC - the professional choise

What is a project?
◆

 The illustration
next to this text
shows a new

project created by a simple
click on the "New project"
icon. The project’s
preferences can be modified
freely and saved as default
settings for new projects.

What is a project?
A project unifies everything belonging to your program: C,
C++ and Assembler source files, header and object files, link
libraries, documentation, graphics, pictures and other
resources. The collection remains easy to manage through
separation into different sections. The project manager is,
however, also a visually orientated Make.

Make and module dependencies
At every compiler run, the dependencies between ".o",
".h", ".ass", ".asm", ".i" and ".c" files (of course also
".cc" or ".cpp") will be evaluated and passed to the project
manager. This allows the project manager to know that a C
source file needs to be recompiled when a ".h" header file
has changed that is being included in the ".c" source.

When you click on "Make", "Run" or "Debug" all
dependencies will be checked, and Make decides which
program modules need to be recompiled and which do not.
The only difference between "Run" and "Make" is that
"Run," after successful compilation, automatically runs the
program. Selecting "Debug" will automatically start the
Debugger after compilation.

Saving the project and creating a new
directory
Before starting the next step, please save the project and
create a new directory for it.

Please click on the "Save project" icon. In the displayed
standard ASL file requester please choose the "StormC:"
directory and enter as file name "Hello World/Hello
World".
StormC User Manual 35

3 FIRST STEPS
◆

The ".¶" suffix
can also be
entered manually

by pressing <ALT>+<P>.

The ".¶" suffix is automatically appended and signifies that
this file is a StormC project.

When you have entered the file name as shown above into
the text gadget and pressed <Return>, you will be asked if you
want to create a new drawer. In order to keep a better
overview you should create a new directory for every project
and proceed as shown.

After confirmation of the "create a new drawer"
requester, you can click the "OK" gadget in the ASL file
requester and your project will be saved in the new directory.

You may wonder why the empty project needs to be saved;
even if the project is empty it is recommended to specify a
clear project path at the start. The names of the source files
and other resources can then be integrated and saved relative
to the project’s path (otherwise the absolute path would be
used). Another advantage is that when adding new files to
the project the ASL file requester already contains the
project’s path, so you won’t have to enter it manually.
36 StormC - the professional choise

Adding files to the project
◆

Adding files to the project
When adding
empty source files
created with

"Add file(s)" the appropiate
preferences for the given
suffix will be taken from the
preference icons located in
the ENV: location.

To continue, please choose "Add file(s)" from the
"Project" menu. Then enter "Hello World.cpp" as the
filename. The suffix should be usable to distinguish between
ANSI-C, C++ and Assembler source files and header files. In
our example we chose ".cpp" because we want to write a
"Hello World" example in C++.

This illustration
shows the ASL
filerequester

where existing files may be
selected and new files can
be created. Please activate
the “File“ text entry field
with the mouse and enter
“Hello World.cpp“ as file
name.

Automatic Usage of Preferences
When you create a new file for use in the project, the file’s
preferences will be taken from the preference icons
according to the specified suffix.

In our example the properties for the new source file "Hello
World.cpp" are taken from the preference icon
"ENV:STORMC/def_text.cpp.info". For files ending in
".c" the properties would be taken from "ENV:STORMC/
def_text.c.info" etc.

Of course you can modify and set the preferences to your
needs. The icon’s tooltypes contain all settings made in the
"Editor" and "Text" sections. You can access these in the
"Settings" menu.
StormC User Manual 37

3 FIRST STEPS
◆

To save the modified settings use "Save As Default Icon"
in the "Project" menu. You will be asked whether you wish
to save the settings to the icon with the settings for the
appropriate suffix or to "ENV:STORMC/def_text.info",
which is responsible for the global settings.

Specifying the program’s name
We will now specify the program name to be used by the
Linker. If a project does not contain one it will create a
program named "a.out" - if you link it at all.

When using the
Debugger
additional files

ending in ".debug" will be
created for every source file.
In order to inform the
Debugger of which modules
the program consists of, a
file ending in ".link" will
be created. If you have
chosen a different path for
the program than the
project path, this ".link"
file will be created there,
too.

Please choose "Select Executable…" from the "Project"
menu.

The displayed file requester will show the contents of the
project’s path. You can enter a file name in this path or
change it to suit your needs.

Saving the project
Next is an introduction to the text editor. Before proceeding,
you should save the project again. Since the last time you
saved, you have followed the steps "Adding files to the
project" including creating a new drawer and "Specifying
38 StormC - the professional choise

Creating a source file
◆

the program’s name". Though it would not be very tragic,
it would be annoying if these steps were destroyed by
something unpredictable such as power failures etc.

To save the project just click on "Save project" or press the
function key <F6>.

Creating a source file
We will now proceed to the real programming. Open the
previously created source file by double-clicking its name in
the project.

An empty editor window with the title "Hello World.cpp"
will appear. Before you begin to enter text please have a
quick look at the editor’s controls. This illustration may help
you.

Please enter the following lines:
// Hello World
// Example program belonging to the
// introductionary tutorial

#inklude <iostream.h>
void main()
{

cout << "Hello World" << endl;
}

Save this text by clicking on the "Save text" icon in the tool
bar.

Show end of line
Show tabs

Show spaces
Autoindent

Overwrite
Lock editor

Show textchanges
Line-/Column
StormC User Manual 39

3 FIRST STEPS
◆

Adjusting settings
Before we compile the program please make sure that the
compiler’s settings are correct. Please choose the entry
"Compiler…" out of the "Settings" menu. The window
found in the illustration below will appear. If you open it for
the first time your window will look slightly different than
shown below.

Because the project settings could not be placed in a single
window we have divided and separated them onto different
pages.

At the upper border of the window you can find a paging
gadget. With clicks you can browse between the different
settings pages.

Please select the "C/C++ Options" page.

Make sure that the cycle gadget in the "Language" group
shows "C++". All other settings should be set as shown in the
illustration.

Confirm these settings by clicking on "Use" or press the <U>
key.

Compiling the source code
Clicking "Make" will open the error window and the source
code will be passed to the Compiler. The compiler and the
40 StormC - the professional choise

Compiling the source code
◆

linker will output status and progress reports in the error
window.

If the compiler finds an error it will be reported in the display
below. You will find a very detailed error description, the
line number, and the source file where the error was found.

In our example we intentionally made a mistake in line 1.
Instead of #include we wrote #inklude. This is a very silly
mistake you should have noticed when you entered the text.
If you have colorization enabled in the editor the word
#include will be rendered in a special colour. As soon as you
change only a single character, the color changes to the
standard color which is usually black. This allows you to find
careless mistakes while entering your text, and avoids
unnecessary compiler runs.

To demonstrate the error window, this simple mistake
should be included in the source. As soon as the compiler
finds the mistake the appropriate error message is shown in
the window.

Of course a double-click on the error message is enough to
cause the project manager to load the source code and show
the error line in the Editor. You can then correct it and run
the compiler again.
StormC User Manual 41

3 FIRST STEPS
◆

Running the translated program
After successful compilation and linking you can click on the
"Run" button (which was previously ghosted) or the "Run"
icon to start the program. You can also press the function
key <F9> instead.

If you click on the "Run" (<F9>) instead of the "Make"
(<F8>) icon the project manager first checks whether all
modules have been compiled. If not, the compiler will be run
for all untranslated modules. After successful translation the
program will be automatically run.

Console output
If you have already started the program you will have
noticed that the program’s output could only be seen for a
short while, and disappeared almost immediately. The
program is very short and thus runs very fast. To see the
output window also after the program has finished we need
to specify the "x/y/width/height/title/options"
parameters when opening the console.

Please open the project settings once again by selecting the
menu item "Settings/Program Start…".
42 StormC - the professional choise

Console output
◆

In the second page of the window you can choose settings
regarding the in- and output. Please enter the following line
in the "Console" text field:

Double-clicking
the program’s
name in the

project is sufficient to re-run
the program.

CON://320/200/Hello World/CLOSE/AUTO/WAIT

Please restart the program by double-clicking the program’s
name in the project.

The program will still be executed very fast but keep the
console window opened. Close it by clicking the window’s
close gadget.
StormC User Manual 43

3 FIRST STEPS
◆

44 StormC - the professional choise

Project Manager
4 ◆
4 Project Manager

s you have worked through the beginning tutorials, you have heard about
the project manager. This is something new to Amiga compiler systems, but
it is a common thing on other computer systems such as the Macintosh or

IBM PCs.

One of the goals of the development environment is to make work easier and more
efficient. The project manager is a big step in this direction.

If you look at traditional development environments, you will recognise that every effort
was made to build tools around the compiler, because it was the "heart" of the system.
Nowadays, this has changed. The "heart" of the system is the project manager. It
assembles all parts of a project, and it navigates and controls every part of it.

The following chapter will tell you more about the project manager, how it works, how
to configure it, and how to navigate throughout the development system with it.

OVERVIEW ... 47

Some words about the startup .. 47
Memory usage .. 51
Settings ... 51

ORGANISATION OF A PROJECT ... 55

Creation of a new project .. 55
Setup of projects ... 56
Project Sections .. 56
Adding Files ... 57

Adding Sources ... 58
Add Window ... 58
Adding Libraries ... 58
Choosing a program name .. 59

Drag&Drop ... 59
Controls of the Project Window ... 59

Folding of Sections ... 60
Showing Sources ... 60
Starting a Program .. 60
Open a Child Project .. 61

Keyboard control ... 61
Cursor keys ... 61
Return ... 61

A

StormC User Manual 45

4 PROJECT MANAGER
◆

Deleting Items of a Project .. 61
Organising files of a project ... 61
Makescripts .. 63
Passing arguments to makescripts .. 66
Saving of the paths .. 69

PROJECT SETTINGS .. 70

Paths and global settings ... 70
Include path ... 71
Header Files .. 71
Working memory - Workspace .. 72

Definitions and Warnings .. 72
ANSI-C/C++ Settings ... 74

Source ... 74
Template Functions ... 74
Exceptions ... 75
Debugger .. 76
Code Generation ... 76
Processor Specific Code Generation .. 77

Quality of the Optimisation .. 78
Optimising .. 78

Compiler Warnings ... 80
Standard of the language ... 80
Security ... 81
Optimisation ... 81

Path Settings and Linker Modes ... 82
Generation of Programs ... 82
Library Path .. 84
Warnings .. 84
Optimiser .. 84

Hunk Optimisations and Memory Settings ... 85
Summarise Hunk ... 85
Manner of Memory ... 86
ROM Code .. 86

Call of the executable program ... 87
Execute Environment .. 87
Start From CLI .. 87
I/O Settings ... 88
Input/Output .. 89

Save Project .. 89
46 StormC - the professional choice

Some words about the startup
◆

OVERVIEW
Before we start with the project manager, I will tell you some
basics of the system. One point will be a precise description
of the start of StormC. You will certainly already have started
the system, but the understanding of what happened and
the function of the controls may still not be clear.

You have launched the development system, but the its
behaviour and the settings to be made are still open and are
subject to change.

Some words about the startup
The system is started by a program called StormCPP. This is
a loader and its only duty is to start the other parts: StormC,
StormED, StormLink, StormRun, StormASM and StormShell.
As this could take a little while, a nice startup picture will be
shown (if you are running an Amiga with less than 32
colours on the Workbench screen, there will only be a small
window that shows you the progress.).

Default Setting
After the installation of
StormScreenManager, a
public screen named
"StormC" will be defined,
but it will not be used. You
have to activate the
corresponding attribute in
the tooltypes of StormCPP.
Please open the information
window and delete the
round brackets at the
beginning and the end of
the corresponding line to
activate this attribute. At
the next startup of StormC,
this screen will be opened
automatically.
Now the Tooltypes (of the
StormCPP icon) will be
executed (if possible). The
following options can be
used:

On an Amiga System with less than 32 colours on
workbench screen, a little window opens to tell you the
different programs being loaded.

Tooltypes
The attributes of a program will be stored in its icon. To
change it please click on the icon "StormCPP" and select
the menu item "Icon/Information". The following
requester will open.
StormC User Manual 47

4 PROJECT MANAGER
◆

QUIET The QUIET tooltype will disable the picture show at start.

The progress window which opens on Workbench screens
with fewer colours (when not enough colours are available
to show the pictures) will also be disabled.

HOTHELP Upon activating the editor window you can press the
<HELP> key to get context sensitive help from the
AmigaGuide docs. If you would like to have the program
"HOTHELP" doing this job you must enter the tooltype
HOTHELP.

SAVEMEM When memory is low, the use of this tooltype offers the
possibility to only load parts of the system, to save memory.
SAVEMEM prevents the loading of StormC, StormLink,
StormASM and StormRUN. These parts are only loaded when
they are needed. After beeing loaded these parts will stay in
memory as long as there is enough memory.

GOLDED The popular editor GoldED can be used instead of StormED.
It is loaded form the drawer "GOLDED:". As GoldED is used
the same way as StormED, it is not the control office of the
system, so it must be loaded memory resident.

Please configure GoldED at "Config/Various..." setting
"Various" to "resident" and save the settings.

PUBSCREEN With the PUBSCREEN tooltype, you can set the public
screen name upon which all StormC windows will be
opened. Like the Workbench, the public screen is shared
among all programs and can be used as a target screen for
another application.

The creation of public screens is handled by a program that
is independent of StormC and which is started separately.
During installation process, if you have allowed the
installation of StormScreenManager, a little program is
copied in your WBStartup drawer to do this job.

The ScreenManager
The StormScreenManager is a little commodity which will be
automatically started after each reboot. It will wait on
background a public screen request and will react upon such
a call
48 StormC - the professional choice

Tooltypes
◆

After the StormC
installation
process, you have

to reboot your system in
order to be able to use the
StormScreenManager. To
bring up its window, press
the hotkey
<Control>+<Alt>+<s>.

Of course, the StormScreenManager must know the names
and the settings of the screens to open. Otherwise, the public
screen requests will be ignored and StormC and every other
program which asks for a public screen, will open their
windows on the Workbench.

You can define
your own hotkey
definition to

bring up the
StormScreenManager
window by modifying the
appropriate tooltype. Please
refer to the Commodities
chapter of your Amiga
Workbench user manual.

An entry for StormC is already defined in the
StormScreenManager. To use this public screen, you just
have to remove the parentheses on the same name entry in
the StormCPP icon tooltypes.

To do this, click once on the StormCPP icon and select the
menu item "Information..." on the "Icon" menu of the
Workbench screen. Once you have the Information window,
click on the PUBSCREEN tooltype, the string gadget will be
filled with this tooltype. Then, you can remove the
parentheses and press return to validate the changes. You
can now start the development system by double clicking
this icon.

Now a new screen is opened and all the StormC program
windows will be shown there.

To modify the screen settings, you have to bring up the
StormScreenManager window. Press <Control Alt s> and the
window will popup as shown on the previous page.

Choose the StormC entry to modify its definitions. The
name will be displayed in the string gadget and can be edited
StormC User Manual 49

4 PROJECT MANAGER
◆

there. To change the screen mode, click on the "ModeID"
gadget.

Choose the appropriate screen mode and depth for your
monitor. Please, keep in mind that a minimum of 16 colours
are needed for the StormC screen. When using 8 or fewer
colours, the editor can not correctly display the text in the
predefined colours.

On the right side of the StormScreenManager window, you’ll
find some other gadgets.

New Creates a new standard entry in the public screen list. The
entry will be appended at the bottom of the list, and you can
modify the name in the string gadget and modify the other
settings with the appropriate gadgets like ModeID and Font.
You can also open and close it right away.

Open Opens the selected screen in the public screen list. Screens
already opened (ie: The Workbench screen) may not be
opened again.

Font Opens an ASL font requester for you to choose the font for
your screen.

Close Closes a screen opened by the StormScreenManager.

Delete Closes a screen opened by the StormScreenManager and
removes its entry in the public screens list.

In order to save all the changes applied to all the screens you
have defined, you must select the menu item "Save" in the
"Project" menu of StormScreenManager.
50 StormC - the professional choice

Memory usage
◆

To finish with the screen manager a single click on the
window close gadget will hide it. This will only close the
program window and this is the equivalent of the "Hide"
menu item of the "Project" menu. If you want to deactivate
the program as well as remove it from memory you must
select the "Quit" menu item in the "Project" menu.

Memory usage
Whenever starting the StormC development system, it
always tries to load as many program parts as possible in
memory to make them resident modules

If you are low on memory, StormC will still try to start up if
there’s enough memory to start StormShell and StormED

The programs StormC, StormLink and StormRun will be
started via a Shell for any compilation and will be unloaded
afterwards. This way, turnaround times will be higher.

Settings
Before opening any project or source, fundamental system
settings should be created and saved.

Following settings can be made:

HexEditorThe initial size, position, display, and start address to show
in the HexEditor window within the debugger can be set
here.

Source text editorWhen the ProjectManager is in the "empty" state, you can set
the font and paths for the source text editor. The other
settings, such as syntax colourisation and entries linked with
source files, will be saved in the predifined icon. More
information about this later.
StormC User Manual 51

4 PROJECT MANAGER
◆

Menu item
names followed
by 3 points (i.e.:

"...") indicate that this is not
a direct function, but that
more information is needed
such as a confirmation or
special settings. A good
example is the menu items
"Save" and "Save As...".
Selecting "Save" will save
the file immediately. "Save
As..." will let you change
the name before performing
the "Save" function.

Selecting the menu item "Settings/Editor...", the
following requester will pops up.

This window can be sub-divided in order to separately define
the File, Font and Colour settings.

The upper paging gadget lets you swap between the File,
Font and Colour settings.

The picture above shows the file settings editor. This is
where you can define the AutoSave settings and if you want
to keep backups of your source files.

Automatic storage
With the cycle gadget within the "AutoSave" group, you
can swap between the following possibilities.

Never There will not be any automatic storage.

Into original file At this position the storage will be done overwriting the
original file. The flag indicating file changes will be removed
once the storage procedure has completed successfully.

Into extra file If the automatic storage is to be done in an extra file, a
second file will be created with the suffix ";0". The AutoSave
will still be performed in the same file.

The "M" flag will not be changed. It means that the secure
file will be more recent than the original file after a possible
crash. After a restart, if you load your original source, a
52 StormC - the professional choice

Settings
◆

requester will pop up to tell you that the AutoSave file is
more recent than your original file.

Automatic storage of unnamed files
If a file is still unnamed at the automatic storage timeout, a
requester will pop up to give you the chance to enter a name.

An ASL filerequester will let you enter a name for this file. If
you cancel the ASL requester, it will pop up again after the
AutoSave timeout.

Automatic storage will only be performed if the text has
really been modified. Of course, whether any changes have
been made can be seen by the "M" flag in the status bar of
every window.

If you have checked the "Confirm AutoSave" gadget, a
requester will ask confirmation before saving the file.

Automatic backup copy
If you have checked the "Make backups" gadget in the
"Backup" group, as many copies as selected will be
performed. The files will have the suffix ";1" to ";9"
depending on the selected copies number.

For instance, setting the number of backup copies to 2, the
first time a file is saved (manually or automatically) will
rename the original. It will have the ";1" suffix and a new
original file will be created. The next time that file is saved,
the file with suffix ";1" will renamed with the suffix ";2". The
original file, as before, will be renamed with suffix ";1". A
new original file will be created. The third time, it will react
exactly as described before.

Selecting text font
In the general editor settings window, choose the "Font"
position for the paging gadget.
StormC User Manual 53

4 PROJECT MANAGER
◆

The font selected here will be used for all the editor windows.
With the cycle gadget in the "Text font" group, you can
choose between the screen font and a custom font.

The default settings of StormC will use the screen font. This
is the font you selected with the font preferences of the
Workbench for "Default text font".

The editor
window can only
display properly

with monospaced fonts.
This means that only non-
proportional fonts (where
the width of all the
characters is the same) may
be used.

Clicking on the cycle gadget until "Custom font" is shown,
will let you select the font and its size.

Clicking on the pop up gadget to the right of the string
gadget will pop up an ASL font requester to choose the font
and its size. This requester will only display the non-
proportional fonts.

A detailed description of the use of the ASL font requester
can be found in your AmigaDOS user manual.
54 StormC - the professional choice

Creation of a new project
◆

ORGANISATION OF A PROJECT

Each program you create with StormC should be defined as
a project. All projects contain at least the source, all
pertinent header files, the name of the program to be created
and the options for the compiler, linker and debugger.

Moreover you can add ARexx and Installer scripts,
documentation as ASCII or AmigaGuide files, and other
program related files to your project.

Creation of a new project
To create a new (empty) project you have to click on the icon
"New Project" in the Toolbar. When the Toolbar is
activated you can select the menu item "New" from
"Project" as well.

If there is no file
"template.¶" in
"PROGDIR:"

StormC uses its default
settings for the new project.
In this case the project will
not contain any settings for
standard libraries and an
error message will not be
created.

The default settings for a new project will be loaded from the
file "template.¶" which can be found in "PROGDIR:"
which is the drawer StormC was started from. If you have not
changed the installation (which you should not do), it is the
drawer "StormC:StormSYS".

The template of the project contains predefined options for
the compiler, linker, debugger, and the standard libraries.

Of course you have the option of changing all default
settings, so when creating a new project your preferred
settings will be used. More information on the definition of
project templates can be found in the "Own Project -
Template" section of this chapter.
StormC User Manual 55

4 PROJECT MANAGER
◆

Setup of projects
When creating a new project,a new project window appears
on the screen in which the standard libraries can be found.

Horizontally the project divides into three sections:

File The horizontal section "file" shows, as the first entry, the
title of the vertical section. In our example it is the section
"Libraries". In front of the title you can see a small triangle
which points to the bottom. The triangle symbolises that
this section is not folded so the following entries up to the
separating vertical line are part of the "Libraries" section.
In our example the names of the libraries are "Storm.Lib"
and "Amiga.Lib".

Code On the right beside the file section there is a code size
section. Here you will find the size of the output code of
compiled or assembled sources, linked programs and
libraries. This section remains empty for header or other files
which are not translated by the compiler.

Text On the right side of the window you will find the text size of
script files (e.g. ARexx and Installer scripts) or other ASCII
files. In our example this section is empty because these are
libraries without source, so their size is unknown.

Project Sections
If there were no project sections all data of a project would
be disorderly. You would only recognise the meaning of a
file by its extension, it it had one. To get a better idea of
which files are which, we included the project sections.
56 StormC - the professional choice

Adding Files
◆

In this picture you will see all
possible project sections,
but more could be added in
the future.

All project sections start with a title. The following picture of
the project sections contains the section "Libraries" at first.
So all following lines (it is only one in this case) are libraries
which should be used by the linker.

Adding Files
There are various ways to add a file to a project. The normal
way is to use the menu item "Project/Add File(s)". As you
will see there are four entries that deal with this matter.

Sections Objectcode size Sourcecode size

Folding switcher.
Use the mouse or
the return key to
open and close
the section.
StormC User Manual 57

4 PROJECT MANAGER
◆

Adding Sources
Sources are all ASCII files of the project. A fine distinction
will be made by the file extension.

When choosing the menu item "Project/Add File(s)," you
will have the option of selecting one or more files to add to
your project. The ASL filerequester is used for this.

A description of
the usage of the
ASL filerequester

can be found in your Amiga
manual.

When choosing several items at a time, they will be inserted
alphabetically. If you would like to have them in another
order you must select them individually.

Add Window
The menu item "Project/Add Window" is available only
if there is an active editor window. Choosing this item will
add the filename of the text of the activated editor window
to the project.

If you didn’t gave a name to your text file before this, you
will get the opportunity to do it now.

Adding Libraries
To make adding of libraries easier, there is a special menu
item called "Project/Add Librarie(s)". The ASL
filerequester will come up with the library path you selected
in project settings so you can add libraries very quickly.
58 StormC - the professional choice

Drag&Drop
◆

Instead of using
the normal linker
libraries you can

use the MaxonC++
compatible manner of using
a logfile for linking. Please
note that the logfile will be
used after the normal
linking. If you are using
normal libraries as well,
they will be linked first and
then the logfile will be
executed.

Please note that if you are
using multi-selection this list
will be inserted
alphabetically. That means
that "Amiga.Lib" will be
linked before "Storm.Lib"
which could cause trouble

It is important to know that "Amiga.Lib" contains
functions with the same names as functions in the standard
ANSI library, but there are differences in the parameters.
When linking "Amgia.Lib" before "Storm.Lib," these
functions will be taken from "Amiga.Lib," which could
cause your program to crash, or otherwise act incorrectly.

Choosing a program name
The last item of the group is for selection of the program
name. If you didn’t choose a name for your program the
linker will automatically create a file called "a.out" in the
project path when you link your code.

After selecting the menu item "Project/Select
Executable…" the ASL filerequester will show up. Now you
can choose a drawer and a name for your program.

Please note that there will be a file with the extension
".link" in this drawer when you are using the debugger.
This file contains data about the modules of the program and
their paths.

Drag&Drop
Of course you may drag files from the Workbench to the
project window. If you drop an icon into the project window
it will be added to an existing section or a new one will be
created.

Controls of the Project Window
You certainly have recognised the folding of the project
section. The small triangle indicates if the following section
is folded or unfolded (so you can see all its entries).
StormC User Manual 59

4 PROJECT MANAGER
◆

Folding of Sections
If a section is not folded the triangle shows to the bottom
and all entries are visible. The following pictures will show
the unfolded and the folded libraries section.

To fold/unfold a section you must click on the triangle next
to the section name. The same actions will take effect if you
double-click the section title.

But there is more functionality in the project manager than
to fold/unfold sections.

Showing Sources
If you double-click a source in the source section it will be
opened in the editor. During loading there will be a fuel
gauge that shows you the progress.

But not only sources in the Source section can be loaded that
way. You can load every entry in the following sections into
the editor by a simple double-click:

Header files
ASM sources
ASM header files
Documentation
ARexx scripts
AmigaGuide files
FD files
Locale catalogues

Starting a Program
By double-clicking an item in the section "Program," you
will start that program.
60 StormC - the professional choice

Keyboard control
◆

If you hold the <ALT> key while double-clicking such an
entry, you will start the program in debug mode.

Open a Child Project
Of course there can be projects within projects, so it is easy
to administrate the source for shared library development, or
multiple program projects, as well. With a simple double-
click on such an item in the project manager you can open
the project.

Keyboard control
You have certainly recognised that the section title and the
items will stay selected (inverted) after selection. This is an
indicator for keyboard control.

Cursor keys
With the keys <UP> and <DOWN> you can move the
inverted beam up or down. If there is a horizontal slider at
the bottom of the project manager window you can move it
with the keys <LEFT> and <RIGHT>.

Return
The <Return> key has the same action as a double-click with
your mouse. If the inverted beam is at a section title and you
hit <Return>, the section will be folded/unfolded. When the
inverted beam is over a document, a source file, or anything
that could be edited in an editor, it will be opened there if
you hit <Return>.

If you are
deleting a file the
way described

here this will not really
delete the file. It will only
delete its appearance in the
project manager. The file
will still be available on your
hard drive. Of course you
can delete files or complete
sections in the project
manager. You might select
the menu item "Edit/Delete"
or you can press or
<Backspace>.

Deleting Items of a Project

If you want to delete a whole section of your project you
must select the title of it. A requester will appear, to verify
whether you really want to delete this section or not.

Organising files of a project
The biggest advantage working with a project manager is the
order of all the parts of your project. This will normally be
StormC User Manual 61

4 PROJECT MANAGER
◆

done automatically, but I will show you some methods to do
it even better.

As you know it is very easy to create a new project. You only
have to click on the icon "New Project" on the toolbar and
a standard project template will be opened. This project has
all settings that are needed to start, but one thing is missing:
there is no file name and you have not defined the place to
save it.

Every project should have its own drawer. Naturally you can
store more than one project in a drawer, but you shouldn’t
do this, as then you will not know which header files and
documents belong to each specific project.

A simple click on
the "Save Project"
icon on the

toolbar is enough to save
your project. As an
alternative you can select
"Save" or "Save As..." from
"Project" as well.

The first step after creating a new project is to save it. Even
if you did not add anything to it this is the best way to give
your project a name and its own drawer. You can do it with
one step. Hit the "Save Project" icon on the toolbar. An
ASL filerequester will appear. Now type in the name of the
new drawer and the name of the project e.g. "New Drawer/
My Project". Now you have created a drawer called "New
Drawer" and a project called "New Project. ¶". The
extension ".¶" will be added automatically.

Please note that
you have to enter
<Return> first.

Unfortunately a click on the
"Save" icon will not test
whether you want to create
a new drawer.

As soon as you hit <Return> you will be asked if you want to
create a drawer named "New Drawer". Confirm it with "OK"
and press <Return> or click "Save".

Project specific headers
Class and structure definitions that are used in several
modules should be collected into a common header file. In
our example debugger tutorial, there is a project specific
header file called "address.h". When you look at the source
to "main.c" and "address.c," you will see that these
header files are called with quotation marks and the
standard headers with angle brackets "<>".

The options of
the standard
include drawer

will be described in the
following sections.

Looking at the quotation marks on "#include," the
compiler decides whether to load the file out of the standard
include drawer or from the same drawer as the source.

The following line will cause "stdio.h" to be loaded from
"StormC:Include" by the compiler. If it does not find it at
this location, all alternatives will be tested before an error
report appears.
62 StormC - the professional choice

Makescripts
◆

#include <stdio.h>

This line

#include "address.h"

causes the compiler to look in the same drawer as the source
for "address.h."

As a result, you should not use a special drawer for project
specific header files. It is better to store them in the same
drawer as the source. You should not store them in the
standard include drawer, either. First of all, this does not
help you keep your files in good order, and it also prevents
the project manager from knowing about the dependence
between source and header files.

Header files which are in angle brackets "< >" will cause no
automatic re-compilation if they are changed in the editor.
However, the dependency of header files which are stored in
the source directory, and which are enclosed with quotation
marks, will be regarded. That means that after a change of
these header files, the sources in which the headers are
included will be recompiled automatically.

Documentation, scripts ...
You should use separate drawers for documentation,
AmigaGuide files, Installer and ARexx scripts if there are
more then two files per section.

You don’t have to keep this order, because the project
manager will show everything very clearly (divided in
sections). But from time to time you will look at your old
projects, and then you will see the advantage of good
structure. The more you work on the structure of your
project the easier it will be to find the files in old projects.

Makescripts
The rules behind a "Make" are essentially very simple. First
of all, all files in the project are checked to see if they need
to be recompiled.

In the case of a C source file this means that the file dates of
its object and debug files are compared to that of the source
text and of any header files that it may #include. If any of
StormC User Manual 63

4 PROJECT MANAGER
◆

these is newer than either the object or debug file, the source
file needs to be recompiled.

The source file also needs to recompiled if one of the header
files has been changed by some other action by the compiler.
This may be the case for instance when the "catcomp"
program is used to generate a header file from a Locale file.

Once it has been determined which files are to be recompiled
or re-linked, each of them is handled by sending the
corresponding ARexx commands to the StormC compiler
and the StormLink linker. These commands are then
executed in turn.

Makescripts are used when other files than just C and
assembler sources need to be translated:

The "Select translation script..." menu option lets you
enter an ARexx script for the active project or - if a section
title has been selected - for all files in a section. These scripts
make it possible to invoke external compilers such as eg.
"catcomp" to compile Locale files automatically.

They are called by the project manager whenever the project
is to be recompiled. Makescripts should have filenames
ending in ".srx". Files with this extension to their names
are also included in the ARexx section.

Selecting the "Remove translation script" menu option
will remove the makescript from a project entry or from all
entries in a project section.

The rules for determining whether a project file that has a
makescript attached should be recompiled, are essentially
the same as they are for C source files.

A file is always recompiled during the first "Make" after a
makescript has been added to it.

As an example of what a makescript looks like, the
"catcomp.srx" script is explained below:

The script’s arguments are the file name (ie. the path to the
project entry) and the base project path. Both are enclosed
in quotes to allow the use of spaces.
64 StormC - the professional choice

Makescripts
◆

The argument list must be terminated by a full stop, so that
any additional arguments that may be passed by future
versions of the compiler will be skipped.

PARSE ARG '"' filename '"' '"' projectname '"' .

The object filename is constructed from the filename
argument. This isn’t necessarily a file that is going to be
linked and whose filename ends in ".o", but simply the file
that is to be created. Catcomp happens to create a header
file.

objectname =
LEFT(filename,LASTPOS('.cd’,filename)-1)||".h"
All output is sent to a console window.

SAY ""
SAY "Catcomp Script c1996 HAAGE & PARTNER GmbH"
SAY "Compile "||filename||" to header
"||objectname||"."

In order to allow the Project Manager to determine when the
file should be recompiled, the object filename must be
coupled to the project entry. If this statement were to be
omitted, the makescript would be called for every "Make".

A maximum of two object filenames may be given as follows:

OBJECTS filename objectname1 objectname2

These names are then attached to the entry and the files are
checked when recompiling.

See also the script
"StormC:rexx/phxass.srx".

The OBJECTS statement should not be used if the makescript
is used for calling an assembler in the section "Asm
Sources". For this section the object names are derived
automatically.

OBJECTS filename objectname

This is where the translating program is called. Error
messages are printed in the console window.

ADDRESS COMMAND "catcomp "||filename||" CFILE
"||objectname

 As "catcomp" creates a header file, it is advisable to enter
this header file into the project. The QUIET parameter
StormC User Manual 65

4 PROJECT MANAGER
◆

represses any error messages in case the header file should
already be included in the project.

ADDFILE objectname QUIET

/* End of makescript */

Almost any makescript can be built along these lines.
Another statement may be useful in some cases:

DEPENDENCIES filename file1 file2 file3 ...

This statement connects the project entry to further files
whose dates will be checked to see whether or not the
makescript should be called. The file named in the project
entry itself will always be checked and need not be specified
using this statement. Using this statement makes sense in
cases where the script involves any extraneous files (the
StormC compiler for instance uses it to declare any header
files that a source file includes with #include "abc.h"; note
that this is not done for headers included with #include
<abc.h>).

Makescript settings are ignored for the project section that
contains C sources; these files are always run through the
StormC compiler. The section containing assembler source
files on the other hand allows the use of makescripts -
although it will use the built-in default rule for StormASM
(which in turn invokes the PhxAss assembler) if no
makescript is set.

Passing arguments to makescripts
The script receives the filename (that is, the path to the
project entry) and the project path as arguments. Both paths
are enclosed in quotes to allow the use of whitespace in file
or directory names.

Next comes a numeric argument whose value indicates
whether the object files should all be written into a single
directory.

0 means that the object file should be stored in the same
directory as the source file;

1 means that the object file is to be stored in the object-file
directory.
66 StormC - the professional choice

Passing arguments to makescripts
◆

The name of the object-file directory - quoted like the other
paths - is passed as the next argument (regardless of the value
of the previous argument, ie. even when the preceding
numeric argument is 0).

The object-file directory is only interesting to programs that
generate code. Source-generating makescripts (eg.
"catcomp.srx") will always write their object files to the
same directory that the file in the project entry resides in.
Thus only assemblers and other compilers really need to care
about the object-file directory.

Makescripts for assembly source files are an exception in that
they take an additional third argument: The name of the
object file. This name must be used when creating the
assembler object file. The path to the object-file directory is
already included in this name, if necessary.

The argument list must be terminated by a full stop so that
any additional arguments that may be passed by future
versions of the compiler will be skipped.

A complete PARSE statement for makescripts (other than one
for assembler sources, as explained above) is composed as
follows:

PARSE ARG '"' filename '"' '"' projectname '"'
useobjectdir '"' objectdir '"' .

For an assembler makescript this would be:

PARSE ARG '"' filename '"' '"' projectname '"' '"'
objectname '"' useobjectdir '"' objectdir '"' .
 Ready-made makescripts

The directory "StormC:Rexx" contains several ready-to-use
makescripts. You may want to adapt them to different uses
and situations:

Assembler scripts
Makescripts for assemblers differ from other makescripts in
that they may not contain the OBJECTS statement.

"phxass.srx"
StormC User Manual 67

4 PROJECT MANAGER
◆

This script translates an assembler file using the PhxAss
assembler. This script is really superfluous because the
assembler is supported by the StormShell directly, but may
be useful if you want to use different assembler options.

"oma.srx"

This script translates an assembler source file using the OMA
assembler.

"masm.srx"

This script translates an assembler source file using the
MASM assembler.

Other scripts:

"catcomp.srx"

This script translates a Locale catalogue file by invoking the
program catcomp.

"librarian.srx"

The StormLibrarian can also be controlled through
makescripts. A project entry in the "Librarian" section can
be loaded directly into StormLibrarian by double-clicking it
with the mouse, or the linker library can be created simply
by double-clicking it while keeping the Alt key pressed. But
if a project should always create a link library, the use of
makescripts is recommended. The list of object files is
created in StormLibrarian as usual. The makescript then
invokes the StormLibrarian, which not only automatically
generates the library, but also declares the linker library as an
object (using OBJECTS) and all object files in the list as
dependant files (using DEPENDENCIES). After the first Make
this will cause the linker library to be created anew whenever
any of its C or assembler source files has been recompiled.

The library will also be recreated if its list of object files has
been modified using the StormLibrarian.

"fd2pragma.srx"

This makescript translates an FD file into a header file
containing the necessary "#pragma amicall" directives for
a shared library. This script shouldn’t normally be necessary
68 StormC - the professional choice

Saving of the paths
◆

as the linker writes this header file automatically whenever
a shared library is linked.

Saving of the paths
When saving a project you will give a filename and a path
for storage. Before you save a project all files are stored with
their full path which is sometimes very long. After the save,
all these paths are shortened to relative paths. This means
that all files that are stored in the same drawer will be stored
with their name only. The path is no longer relevant.
StormC User Manual 69

4 PROJECT MANAGER
◆

PROJECT SETTINGS

Every project has its own settings for the compiler, linker
and RunShell. Maybe that doesn’t sound difficult, but there
are many settings and connections that should be thought
about before compiling a new project.

First there are some principle settings, e.g. default paths for
Includes and linker libraries, standard definitions and the
settings for the program start.

Next, the more complicated settings for code generation.
The global settings for a project, whether the compiler will
run in C++ or ANSI-C mode, can be changed for every source
file.

Many of these settings will be set to a default if you create a
new project. Some of the settings are project specific and
must be set according to the needs of the project. As an
example: before starting the linker you must decide whether
to build a driver or a shared-library. If you want to create a
shared-library, but the settings are for a normal program, the
result will not be satisfying, but you can correct this very
easily by changing the settings and starting the compiler
again.

The following sections will explain the individual controls of
a project. You should open a new project and choose the
menu item "Settings/Project Environment...". The
following requester has a cycle gadget to change between
eight different pages. The gadgets "OK" and "Cancel" will
accept or cancel all these settings. You should use "OK" to
accept all these settings or click "Cancel" if you don’t want
them to be accepted or if you just wanted to have a look at
them.

Paths and global settings
The first control is the settings for the includes.
70 StormC - the professional choice

Paths and global settings
◆

Include path
The pre-processor reads the definitions for the standard
functions out of the include files. You use the pre-processor
directive "#include" to include these files into your source.
As you may know, there are two possibilities for this: You can
put the include file name in quotation marks like #include
"this_one" and the pre-processor will look for it in the same
drawer as the source, or you can use the angle brackets like
#include <this_one> and the pre-processor will recognise
them as standard include files, and look for them in the
predefined directory. The predefined directories are listed in
the listview you will see at the left side of the requester. You
can define more than one directory for searching standard
include files.

NewWith a simple click on "New" you can create a new entry in
the listview. You can type the complete path into the string
gadget under the "New" button. If you do not know the
exact path, or simply don’t wish to type it, you can use the
ASL filerequester to look for it by clicking the icon next to
the string gadget.

RemoveClick on "Remove" to delete the selected entry from the list.

Header Files
One way to increase the speed of the compiler is to create
and use pre-compiled header files. The pre-compiled header
files are always present after you create them once. Another
advantage of the pre-compiled header files is that all files are
assembled to one big file which can be loaded faster.

To tell the compiler where the header files are end and your
program starts, you must mark it with a "#pragma header"
statement. One simple way is to put the "#includes" of all
headers you didn’t write yourself (e.g. OS includes), or which
will not be changed, at the beginning of your source. The
"#pragma header" statement should follow. After that, list
your own header files and the rest of your program.

The pragma statement has no effect until you activate
"Write Header File" in the cycle gadget "Header Files"
and start the compilation of any changed modules. As soon
as the compiler reaches the pragma statements it will stop
compiling your source, and the pre-compiled header file will
be written with the given name to the predefined drawer.
StormC User Manual 71

4 PROJECT MANAGER
◆

Before you start the compiler again you should switch the
cycle gadget "Header Files" to "Read Header File". Next
you should enter the path to the pre-defined headers into
the string gadget below. You can use the ASL filerequester for
that by clicking on the icon next to the string gadget. The
compiler now uses the pre-compiled header file and looks for
the statement "#pragma header" to start further
translation.

Working memory - Workspace
The compiler will need some free RAM for code generation
and assembling, but StormC does not know how much in
advance, so you must choose a value for workspace. If the
workspace is not large enough, the compiler will stop and
give you the error message "Workspace Overflow".

A value of 100 KB will be enough for most of your programs.
But if the compiler gives you an error message you should
raise this value and start compilation again.

Definitions and Warnings
With these controls you can choose pre-processor warnings,
and you can select the predefined pre-processor symbols.

#define

In this list you can predefine pre-processor symbols. Every
item in this list will be treated the same as if you had entered
a "#define" line at the beginning of your source.

An example: You have inserted several assert() calls in your
program and you included the file "<assert.h>". To disable
these calls, you must add "#define NDEBUG" somewhere at
the beginning of your source, before the "#include
72 StormC - the professional choice

Definitions and Warnings
◆

<assert.h>" line. Or, you may simply insert "NDEBUG" into
the list of predefined pre-processor symbols and mark the
gadget in front of the string gadget.

Enable/DisableTo disable a special pre-processor symbol for the next
compiler run you can simply mark it with the mouse. It
appears in the string gadget below the listview and you can
enable/disable it by clicking the gadget on the left side.

The controls for "#define" are nearly the same as those for
the "#include" controls in the previous section.

NewThis will create a new entry in the list and the string gadget
will be activated. Type in the name of the new definition e.g.
"STORMPRAGMAS" and press <Return>. The new pre-processor
symbol will be inserted in the list now and it is activated. If
you interrogate "#ifdef STORMPRAGMAS" you will get the
value TRUE.

RemoveWith "Remove" you can delete the marked item from the
list.

CharacterYou can not only define a symbol; you can also assign a value
to it. You can enter any alphanumeric character into the
string gadget. Unfortunately, the compiler only accepts one
character per symbol, so the entry "(11-5)" will only take
the "(" and ignore the rest. More complex definitions will
need to be done directly in the source, but you can use it for
symbol definitions for flags like "NDEBUG".

WarningsEven at runtime of the pre-processor, there can be language
constructs that are syntactically and semantically correct,
but that might be programming errors.

Nested CommentsThis warning appears when embedded comments, e.g. "/*
This is a /* comment */", are found, since there might
be a missing "*/" at the end of the comment.

Unknown #pragmaPragma statements are independent of the compiler. But if
your sources were made for other compilers they might
create confusion. Normally the compiler ignores every
pragma it does not know, but a warning will give you the
chance to see whether you made a typing mistake.

Suspicious Macro
Parameter

If a macro argument extends over 8 lines or 200 expressions,
the compiler assumes that you have forgotten a closing
StormC User Manual 73

4 PROJECT MANAGER
◆

bracket. So, there will be a warning, and you will not have to
look for this error endlessly.

ANSI-C/C++ Settings
With these settings you can control code generation and
debug output.

Source
You can choose between "ANSI-C" and "C++" mode. If you
are in C++ mode you can make some additional C++ settings.

Template Functions
Create All Templates Templates are a very useful and easily understandable

construct of the C++ language, but they are not easy to use.
Essentially function templates have some surprising
properties. Normally you can not say if the definition of a
template is correct or not. Maybe you can think of a
discretionary function template for a sorting algorithm (e.g.
quicksort). The type of the element of the vector that has to
be sorted is normally a template argument.

The programmer can solve the problem by implementing
the needed function for the datatypes by himself. Since you
are working with more than one module on a bigger project
the compiler can not know which of the not-created, but
needed functions exist as finished ones anywhere within the
project. The compiler has two different strategies to solve
this problem. The first one will be activated by choosing the
entry "Create All Templates". The compiler assumes that
you didn’t write your own templates, so it generates all
templates which are needed, but are not already defined. If
an error occurs during this process it will be reported.
Functions that are created but that are not needed will be
deleted by the linker, later.
74 StormC - the professional choice

ANSI-C/C++ Settings
◆

Another strategy will be selected if you do not mark "Create
All Templates". In this case all templates will be created
too. If there an error is found in one of the functions the
process will be halted. There will be no code generation for
the faulty function, and the programmer will not be
bothered with the error message. The compiler assumes that
all templates that can not be created without an error are
defined elsewhere in the project.

I advise you to switch on this option during program
development, because only in this case will you will get a
detailed error message about errors in the template. But if
you are working with finished template libraries or if you are
porting an existing program, there might be a need to switch
off the generation of templates.

If you ask asking yourself why you have to care about the
right strategy, I will tell you how to implement a function
template correctly:

• Do not create templates the first time you compile your
code.

• The linker tries to link the project and generates a list of
all undefined functions.

• In the final compiler run, all modules that might contain
a helpful template definition will be compiled anew.
With the help of the list, generated by the linker, it is
clear which functions must be generated.

Such an implementation would not only be very large-scale,
but also very slow because some modules must be compiled
twice every time.

Exceptions
Using ExceptionsSometimes it is an advantage if you compile a "classic" C++

program that does not use exception handling in a special
compiler mode. The related keywords ("catch", "throw",
"try") will not be recognised, and in the created code there
is no book keeping of the needed destructor calls. If "Use
Exceptions" is switched off, exception handling is not
possible any more.
StormC User Manual 75

4 PROJECT MANAGER
◆

Debugger
If you choose to create a debug file the compiler will generate
a file for each translation unit from which the debugger
could take the needed information. There are two
possibilities: "Small Debug Files" and "Fat Debug Files".

Small Debug Files Small debug files contains only a few pieces of data about
variables. They are stored in the debug files of every module.
There is no information about "#include" files which are in
angle brackets within a debug file.

Fat Debug Files These files contain all data types, structs, and class members.
The debug files of every module are accordingly big.

Create Symbol Hunks Instead of the StormC source-level debugger you can use a
symbolic debugger like "MetaScope" as well. To get some
important information you should create the so-called
"symbol hunks".

ASM source without
C source

If you selected this option the compiler will generate an
assembler listing for every file it has compiled successfully.
The assembler source will be stored in a file with the same
name as the C source but the ending ".s".

If you are familiar with other compilers you might wonder
about the "obviously" well optimised assembler code. To
clarify this: The compiler generates intermediate code in an
internal binary format that looks like assembler source in
some way, but that has nothing to do with an ASCII file. The
"assembler" will translate this intermediate code to real
machine code while doing some optimisations.

The assembler source generated by StormC correspond
exactly to the code which is translated to machine code
directly. So you do not need the help of a re-assembler to
look at the quality of the generated code.

ASM Source With C
Source

If you want to have the corresponding C source (as a
comment) within the assembler source you should select
this option.

Code Generation
Extra Hunk For Every
Function

A hunk will be generated for every global variable and every
function during code generation. As a result the linker can
eliminate every unused function and the code size will
76 StormC - the professional choice

ANSI-C/C++ Settings
◆

decrease. This is very practical if you want to program a
library, but it has a price: functions of a translation unit can
not use identical strings collectively and they cannot call
each other via PC relative addressing. This can result in a
larger, slower program.

Processor Specific Code Generation
The proven MC68000 processors are a dying species in the
Amiga world. 32-bit processors (68020 to 68060) and
Floating Point Units (68881 and 68882) have prevailed. So
programmers have new and powerful machine commands
which give them a sometimes astounding increase in speed.
The 32-bit processors have some important features like the
operators for longword multiplication and division and for
the handling of arrays and bit fields.

If you generate
code for 68020
and above or for

an FPU these programs
might not run on your old
Amiga any more. They will
certainly crash suddenly.

By using the cycle gadget you can tell the compiler which
code it should generate (68020/30/40/60).

Programs which do many floating point operations will be
sped up by using an FPU (Fast Floating Point Unit). The
option "Use FPU" will generate special code for the FPU.

If you switch to "68040/60" optimisation the use of the FPU
will be activated automatically. This is because both
processors have a built-in FPU.

Small and huge code
model

StormLink supports "near code". In this model, pc-relative
addressing of functions is used to get faster code and smaller
programs. If the NearCode hunk gets bigger than 32 Kbytes,
StormLink inserts a "jump chain" between the single hunks
to make a call with more than 32 Kbyte address range
possible.

Small and huge data
model

A program which is created in the small data model has a
single hunk which contains the pre-initialised data of the
program and the uninitialised data (BSS). Access to this hunk
is handled by address register relative addressing. These
accesses have the advantage of being faster and shorter than
32-bit absolute accesses.

In the small data or code model, only SHORT will be used for
an address. These are 16 bit or 2 bytes. This makes the
Program shorter and faster but the program can only be 64
Kbytes in size. The short addressing is possible though a
trick. One register of the CPU, normally A4, points at a place
StormC User Manual 77

4 PROJECT MANAGER
◆

in the data area of the program and all addresses can be
called by an offset to this register.

Small data model
(a6)

"Small Data Model (a6)" is a format that is available in
StormC only. It is mainly the same as the NEAR format, but
the base register is A6 instead of A4.

In a shared library the program has no elegant method to get
the value of the base register, but it does get the library base
in register A6.

Quality of the Optimisation
To improve the quality of the code requires a lot of RAM and
an increase in the translation time.

Optimising
At this time the compiler knows 6 levels of optimisation. You
may select the level with the slider or by entering the
number directly.

The following optimisations will be done by the respective
levels:

Level 1 The first level optimises basic blocks. A basic block is a
sequence of code statements which do not contain any
jumps. Successive blocks will be joined to make later
optimisation easier. Unused blocks (which are not jumped
to) will be deleted. This step will be repeated until the code
can no longer be improved. The joining of successive blocks
and the deletion of blocks never used will also occur in
higher levels.

Level 2 Useless statements, such as assigned variables that are never
used, will be detected and deleted.
78 StormC - the professional choice

Quality of the Optimisation
◆

Level 3Automatic registerisation of temporaries and variables will
be used if possible.

Level 4Assignments to variables that are never used will be deleted,
and the whole program will be checked again until no
redundant assignments can be found.

An example:

At this useless function

void f(int i)
{
int j = i+1;
int k = 2*j;
}

the second assignment will be recognised as useless. From
level 4 on the code will be checked again so the first one will
be deleted too.

Level 5During M680x0 code generation, redundant MOVE
commands will be elimated.

So

move.l 8(a0),d2
add.l d2,_xyz

will become

add.l 8(a0),_xyz

Level 6During expression evaluation, temporary variables will be
created at code generation for provisional results of any
kind. They may be put into processor registers later.
Temporary variables from lower levels will be recycled if
possible, to keep the number under a certain boundary.

The expression "a*b+c" will become intermediate
statements like:

h1 = a*b
h1 = h1+c

From level 6 on these temporary variables will not be re-used
principally. So there will be code like
StormC User Manual 79

4 PROJECT MANAGER
◆

h1 = a*b
h2 = h1+c

In a later optimisation step, a test is made to see if it makes
sense to put "h1" and "h2" into the same register. Because
an increasing number of temporary variables can cost a lot
of time and RAM, this can be an expensive optimisation, but
it helps make the best use of the CPU registers.

Compiler Warnings

Some constructs and expressions are syntactically and
semantically correct, but they are a little strange and might
be the consequence of a programming mistake, so there are
eight warnings which can be switched on and off as personal
preference.

These are the warnings:

Standard of the language
Missing Prototypes If a prototype is not declared for a function, there will be a

warning in C mode. In C++, this is an error.

Old K&R Parameter "K&R" means "Kernighan & Ritchie" the Pre-ANSI pseudo-
Standard. With this option you will get a warning if a
function is declared in this old style.

Reference to
temporary Variables

According to the C++-2.0-Standard, it is an error if a
Reference will be initialised to a non-constant type with a
non-L-value and a temporary object must be inserted. As this
rule did not exist in the first standard there is no real error
message but a switchable warning.
80 StormC - the professional choice

Compiler Warnings
◆

An example:

void dup(int &ir)
{ ir *= 2; }

void main()
{ int i; dup(i); // OK
long l; dup(l); // ATTENTION! }

As "I" must be converted from "int" to "long" a temporary
object must be inserted. The programmer will be surprised
because at the second "dup" call there is a side effect on the
argument. So the new C++ rule is very sensible.

Security
Missing "Return"If there is no "return" statement in a function which has

non-"void" return type, then there is certainly something
wrong. You should always switch this warning on.

Empty StatementA statement like "69;" makes no sense, so there is probably
something wrong with it. A well-known error is the call to a
parameter-less function without an argument list, e.g.
"test" instead of "test();".

Unsure StatementThis option is warning if there is an implicit type change
(without CAST) from integer to floating point types.

Suspicious "="This is a popular construct "if (a=b)...". It is correct and
many programmers like it very much, but it is a beginner
error as well if it is used instead of "if (a==b)". If this
option is active there will be a warning if an "=" follows a
logical expression e.g. "if", "while" or "do" and operands
like "||", "&&" or "!".

Optimisation
Unused VariablesThere will be a warning if there is a declared variable that is

never used, or if a variable is used but not initialised.
StormC User Manual 81

4 PROJECT MANAGER
◆

Path Settings and Linker Modes
The Settings of "Linker Options 1" set the defaults of how
a program has to be linked.

Generation of Programs
Linking Programs With the first cycle gadget you will choose the manner of

program of the project. "Link Program" will use the
standard library. If the next cycle gadget says "StormC
Startup-Code" the file "PROGDIR:startup.o" will be
linked to the program.

No Linking The Linker will not do anything. After the compiler run, the
project will be "ready compiled". The object and debug files
will be stored, but no executable will be created.

Link as Shared
Library

The linker creates a function table out of the indicated FD
files and imports the standard shared library functions
"LibOpen()", "LibClose()", "LibExpunge()" and
"LibNull()". If "StormC Startup-Code" is selected the file
"PROGDIR:library_startup.o" will be linked to the
program.

StormC Startup-Code As said before, the standard Startup code will be linked to the
program when this option is selected. The Startup-code can
be found in the directory "PROGDIR:". Shared libraries will
use the startup code "library_startup.o," the others
"startup.o".

Without Startup-
Code

Normally only "drivers" and "handlers" are linked without
Startup-Code. Here the libraries mentioned in the project
will be linked, but the Startup-Code will not be used.
82 StormC - the professional choice

Path Settings and Linker Modes
◆

Own Startup-CodeIf this option is selected the string gadget is activated and
you can enter your own object file that should be used as the
Startup-Code for linking.

Link All ObjectsNow all functions and global variables from the object files
of the project modules will be linked to the program, even if
they are not used. Of course this does not count for functions
in libraries.

Write Map FileStormLink creates a file which contains all symbols from the
generated programs with their assigns in the finished
program. Here you see part of a linker map:

_cout = $ 24 in hunk 1 <stormc:lib/storm.lib> (Far Public)
_std__out = $ 32 in hunk 1 <stormc:lib/storm.lib> (Far Public)
_std__in = $ 16 in hunk 1 <stormc:lib/storm.lib> (Far Public)
_cin = $ 8 in hunk 1 <stormc:lib/storm.lib> (Far Public)
_clog = $ 40 in hunk 1 <stormc:lib/storm.lib> (Far Public)
_std__err = $ 4E in hunk 1 <stormc:lib/storm.lib> (Far Public)
_cerr = $ 40 in hunk 1 <stormc:lib/storm.lib> (Far Public)

The first entry of a link is the name of the symbol. Then the
hexadecimal value follows, then the hunk in the program
where this symbol can be found, the object file it came from,
and the memory class of the hunk. The map file has the same
name as the generated program with the ending ".MAP".

Protocol Name
Conflicts

StormLink looks for multiple occurrances of symbols. If
something is found, the name of the file in which the
symbol was defined will be shown. The test will be made on
libraries as well, because names could be multiply used, but
with different meanings.

A good example is the C function "printf". It is in
"MATH.LIB" as well as "Storm.Lib", but the one in
"Math.Lib" can print floating point values.

Offset Of Linker Data
base

Sets the offset of the data section for the created program to
the value: first data object + number. If your program
contains a lot of data and StormLink gives you the error
message "16 bit Reference/Reloc Overflow," a base
number of 0x8000 could fix the problem. If this does not
help, you must use 32 bit addresses (HUGE data model).
StormC User Manual 83

4 PROJECT MANAGER
◆

Version This sets the global constant "__VERSION" to the value of the

string gadget.

Revision This sets the global constant "__REVISION" to the value of
the string gadget.

Library Path
Load Logfile If StormLink can not find a symbol, it prints the message

"ERROR 25 ..." Before that is a text which shows which file
it has to load to find the symbol. The logfile which is loaded
with this option contains information about object files and
the there defined symbols. It has the following setup:

<filename> <= This is an object file
<symbol>

<symbol>

If "Load Logfile" is active the name of the logfile can be
entered into the string gadget.

Warnings
32 Bit Reloc When the program contains "32 Bit Reloc" StormLink

outputs a warning. This option is good for writing position
independent programs.

Optimiser
Optimise NearCode
Model

When this option is set StormLink runs an optimisation
pass. If it detects a 32 Bit Reference which points to the same
hunk, StormLink tries to change it into a PC relative, so the
reloc entry will be freed, which saves 4 Bytes.

This method may lead to incorrect programs. The optimiser
only has a small disassembler, which only knows the
commands JSR, PEA and LEA. It has no idea of how to
distinguish between code and data in code hunks. The
optimiser will be called for global references only, when
building references between object modules. For reloc
entries an assembler or a compiler should do these
optimisations.
84 StormC - the professional choice

Hunk Optimisations and Memory Settings
◆

Hunk Optimisations and Memory Settings

Summarise Hunk
Create Single HunkStormLink will only create one CODE hunk which contains

all code, data and BSS sections. This is an interesting thing
for game programers.

A reloc routine has to work on one hunk only. When the
program is in SmallData model you can write completely PC
relatve programs in a high-level language. The base register
for data access (normally A4) will be initilised with:

lea _LinkerDB(PC),a4

All other accesses are made with d16(pc) or d16(a4), and
the program will not contain any absolute addresses. Such
programs can be loaded very fast and are re-entrant in most
cases. In conjunction with "Create ROM Code" you will get
a program that can be loaded to any even address by
Read(file, buffer, len) and is immediately usable there. One
condition is that the program does not use absolute
addresses. So you should use "32 Bit Reloc" in any case.

Resident ProgramsA program which should be resident in memory has high
requirements in the runtime system. A global variable must
not be declared the way another instance of the program
could use it.

Principally a resident program has a small data model and it
copies all data at every invocation, and works with the copy.
It is important that the program does not contain any
absolute addresses, because they always point to the original
StormC User Manual 85

4 PROJECT MANAGER
◆

data segment. These accesses can not be redirected to the
copy. The option "RESIDENT" will switch these warnings on.

Write Data-Data-
Relocation

If there are fixed 32 Bit Relocations of data to Data/BSS you
can tell StormLink to create an internal relocation table for
the program, so that the Startup-Code can compute the
relocation for the copy of the Data/BSS hunk on its own.

Manner of Memory
You can select "Standard", "Chip RAM", "Fast RAM" and
"configurable". You should use "Standard" so the
program can choose the best settings according to the
available hardware. With these settings you can force the
entire program or single hunks to be loaded into Chip or Fast
RAM.

ROM Code
Creating ROM Code

When the
program uses the
data relative to

an address register, the BSS
hunk will be assumed to be
after the data hunk. The
address for BSS is the
address of the data + length
of data. The options for
SmallCode, SmallData and
SmallBSS will be set
automatically, so there will
be no fragmentation. With
the additional option "32 Bit
Relocation" and
corresponding Startup-
Code, you can write totally
PC relative programs.

When you want to burn an EPROM, you must use these
settings. The output file contains pure binaries of the code
and data hunks. The BSS hunk should be located at a certain
address with "AllocAbs()". Code and data hunks are
relocated to the pretended address. The AmigaDOS overhead
of reloc hunks, etc. are not added. After the code there is only
data in the target file.
86 StormC - the professional choice

Call of the executable program
◆

Call of the executable program

Execute Environment
StacksizeThe string gadget or the slider can be used to adjust the

stacksize for the program, which will be reserved by the
RunShell.

TasknameYou can enter the name of the Exec task here.

Current DirectoryYou can enter the name of the directory that will be the
current one for the program.

PROGDIR:You can enter the name of the home directory of the
program.

Start From CLI
When started from a Shell you can supply arguments which
will be evaluated by C by the parameters "argc" and "argv".
At program startup from within the development
environment, you can simulate this manner of parameter
handling.

Command NameThe CLI command name is the name that is handled by
"argv[0]".
StormC User Manual 87

4 PROJECT MANAGER
◆

Arguments Here you enter the arguments that will be given to the

running program by the development system.

I/O Settings
You can choose between "Console" and "Files" for Input/
Output. "Console" will use "stdout" and "stdin".
Normally a console is opened with "CON:". When you want
a window to be opened with special attributes you must
provide further data. You can enter the starting size, the
position and title of the window. The syntax is as follows:

CON:x/y/width/height/title/options

X Number of pixels from the left border of the screen to the left
border of the Shell window. When you do not enter a value
(//), the lowest number of pixels will be used.

Y Number of pixels from the upper border of the screen to the
upper border of the Shell window. When you do not enter a
value (//), the lowest number of pixels will be used.

Width Width of the Shell window. When you do not enter a value
(//), the lowest number of pixels will be used.

Height Height of the Shell window. When you do not enter a value
(//), the lowest number of pixels will be used.

Title This defines the Shell window title.

The parameters of the options must be separated by a slash.

AUTO The window will be opened automatically if the program
needs data or wants to provide output. After the Shell
window is open you can enter data immediately.

ALT When you click the zoom gadget the window will be resized
and repositioned according to the values given.

BACKDROP This window will be located behind all Workbench
windows. You can not put it in the foreground, so you must
change all other windows to have a look at this one.

CLOSE The window will get all standard symbols including the close
gadget.
88 StormC - the professional choice

Save Project
◆

INACTIVEThe window will be opened, but it will not become the active
one.

NOBORDERThe window will not have a left or bottom borders. There
will only be zoom, fore/background and close gadgets.

NOCLOSEThe window will be opened without a close gadget. When
console window is opened with AUTO there will be a close
gadget automatically added.

NODEPTHThe window has no fore/background gadget.

NODRAGThe window can not be moved. There is zoom and fore/
background gadget, but no drag gadget.

NOSIZEThe window has a fore/background gadget only.

SCREENThe window will be opened on a public screen which must
already exist. You must enter the name of the public screen
after the key-word SCREEN.

SIMPLEWhen you enlarge window size the new area will be filled
with text so you will have a look at parts that were out of the
visible area before.

SMARTWhen you enlarge window size the new area will NOT be
filled with text. This saves memory.

WAITThe window can only be closed with the close gadget or by
pressing <Ctrl>+<\>. If WAIT is the only option no close
gadget will be available.

Input/Output
When you select "Files" on the upper cycle gadget the string
gadgets "Output" and "Input" become available. You can
enter the path and the name of the file where all output data
should be stored at "Output" and the corresponding ones
at "Input".

Save Project
After you have made all your project settings, you can use
them for your current project by clicking "Use," or pressing
<u>.
StormC User Manual 89

4 PROJECT MANAGER
◆

You can now save these settings permanently by clicking the
"Save Project" icon on the toolbar or with the menu item
"Project/Save"

Build your own
Project Template

A project template is a default project that is used when a
new project is created. It is stored as "template.¶" in the
directory "PROGDIR:". If you want to build your own project
template you should open a new project and make your
individual settings. To save this project as your project
template you must select the menu item "Project/Save As
Project Template".
90 StormC - the professional choice

Editor
5 ◆
5 StormED

tormED has some special features that makes writing source more
comfortable and easy. StormED will be used every time the source is
displayed. This is mostly when editing your text, but if you are debugging,

your source will be shown in the editor as well. This will make it easier for you to become
familiar with the controls of StormC, because they are always the same. You will have
worked through "First Steps" by now, so you are more familiar with StormED. If you are
working with it often you will come to appreciate the syntax highlighting because it
enable you to recognise errors very quickly. The following chapter will tell you
everything about StormED. You will see it is a wonderful tool to use.

IN GENERAL ... 93

New text .. 93

Controls of windows .. 93

Open / Load Text .. 94
Tooltypes .. 94

Save Text / Save Text As 94

Free Text ... 94

Options of Text .. 95
Tabulations and Indents .. 95
Indent ahead and behind of brackets ... 96
Dictionaries and Syntax ... 97
Dictionaries .. 97
Syntax .. 98
Colour Settings ... 99
File Saving Settings ... 99
Saving the Settings ... 100

Keyboard Navigation ... 100
Cursor-Keys ... 100
<Return>, <Enter>, <Tab> ... 100

Undo / Redo .. 100

Block Operations ... 101
Mark, Cut, Copy and Paste .. 101

The Mouse .. 102

S

StormC User Manual 91

5 STORMED
◆

Find and Replace ..102
Direction ...103
Mode ..103
Ignore Upper/Lower Case ...103
Ignore Accent ..103
Find ...103
Replace ...104
Replace All ..104
92 StormC - the professional choice

New text
◆

IN GENERAL

Before you start with this section you should have learned a
little about the project manager. You will already know that
normally you do not open a text without opening a project
first. Opening "pure" text is only recommended if you want
to have a quick look at it. All sources that belong to a project
should be contained within it. Opening text will then be
easier, because you can double click on it’s entry in the
project manager.

New text
Click on the icon "New Text" in the menu bar to open a
new text window You can now start typing. As mentioned
before, this is not the usual way to work. You should open a
new project first and then add new text with the menu item
"Project/Add File(s)…". You will find more information
on this in the chapter about "Project Manager".

Controls of windows
You will notice that there is a row of letters at the top line of
the editor window.

If you move the mouse pointer over the (text) icons you will
get an appropriate explanation in the information line at the
top of the editor window. In the right top corner of the
editor window you will find the line and column counters.
They are active for input and output. So if you want to move
to a certain line in your source simply click into the line
counter string gadget and type the line number you want to

Show end of line

Show tabs
Show spaces

Autoindent
Overwrite

Lock editor

Indicator for changes in text

Line-/Column counter
StormC User Manual 93

5 STORMED
◆

go to. As soon as you hit <Return> the cursor will jump to
the new position (if you have chosen an existing line
number!).

Open / Load Text
You will probably have wondered about the difference
between opening and loading text.

The menu item "Load" is only available when an editor
window is active. The text will be loaded into this editor
window.

If you "Open" text this will open a new editor window.

Tooltypes
All attributes of texts (like text colour, tab size, bracket
indent) and the size of windows are stored in the tool types
of the respective icon of this particular kind of text. They will
be applied when opening and loading. At loading the size of
the window will not be recognised.

Save Text / Save Text As ...
If you create new text it will be named "unnamed". This
appears in the title bar of the editor window. If you made any
input to this text "Save" and "Save As..." will have the
same effect. The ASL filerequester will be used for selection
of a filename. Unfortunately you cannot double-click to
make this selection because ASL does not support this. If you
stored the text once it will be overwritten every time you
choose "Save". The tool type (window size, text attributes)
will be adjusted as well.

Free Text
To remove the text in your active editor window you can
dispose of it’s contents. Choose the menu item "Project/
Clear". This item is only available if there is an active editor
window. The text will be disposed of but the window will
stay open so you can load another one or start typing a new
one. When text has not been saved before you will be asked
to do so or to accept the disposal.
94 StormC - the professional choice

Options of Text
◆

Options of Text
Before explaining further functions of StormED you will
need to know more about the options of the editor. The
following sections will always refer to these options, because
most of the functionality of StormED depends upon it. The
chapter "Project Manager" has already explained the global
options of the editor so here we will only discuss the text
options.

To get the options requester you must activate an editor
window and choose the menu item "Settings/Text…". A
requester will appear on the screen similar to the one of the
project options.

At the top of the requester you will see paging gadgets with
the following titles:

Tabulations and Indents

TabulationYou can change the width of the tab stops with the slider or
you can type its value into the string gadget. Values between
1 and 16 are allowed.

C/C++ Bracket
Blocks

Most C programmers use a special structuring of their source
to get a better overview. There is no standard instruction for
this and so there are many possibilities of how this can be
achieved. We therefore leave this up to you. You can
configure the options for some automation to make
structuring easier.

When you do not want the editor to affect the structuring of
your texts please select "No Indent" at the first cycle gadget.
Then there will be no indention after you typed a bracket.
On any other selection the cursor will be indented an
adjustable amount of characters. You can choose if this
should happen when typing the bracket or after you hit
StormC User Manual 95

5 STORMED
◆

<Return> or <Enter>. The values of "Ahead of Brackets"
and "Behind of Brackets" will affect the amount of
characters ahead of or behind the brackets. You can adjust
the values with sliders or by typing into the string gadget.
The range is from 1 to 16.

The value does not always mean single characters because it
is effected by the context of the next cycle gadget. If it says
"Indent Spaces" it will be real characters. But if it says
"Insert Tabs" the cursor takes over the value of "Tab Size".
For example: when you set "Tab Size" to 8 and "Ahead of
Brackets" to 4 the cursor will indent 32 characters and
insert a bracket there. If you choose "Insert Spaces" the
cursor would be moved 4 characters to the right and the
bracket would be inserted here.

The use of automatic indent takes effect only if you activated
the indent function of the editor. Otherwise the cursor will
be placed in the first column after hitting <Return> or
<Enter>.

Indent Brackets When you set the option "Indent Brackets" a bracket will
be set according to the value set at "Ahead of Brackets".
An amount of spaces or tabulators will be inserted in front
of the bracket and the cursor will be placed behind it.

Indent behind of
Brackets

To activate automatic indent according to "Indent behind
a Bracket" you must hit <Return> or <Enter> behind a
bracket. According to the value of "Behind of Brackets"
the cursor will be moved a certain amount of spaces or
tabulators to the right. This will be done relative to the
position of the cursor.

For example: when the cursor is in column 10 and you type
a bracket the cursor will be placed in the next line in column
12 (if you set "Insert Spaces" and "Ahead of Bracket" to
2).

Ensure that the
Indent function is
active for these

settings to take effect. You
can check the status by the
"I" icon.

Indent ahead and behind of brackets
The option "Indent ahead and behind of Brackets" is
a combination of "Indent Brackets" and "Indent
behind of Brackets". If you type a bracket a certain
amount of spaces or tabulators will be inserted. The bracket
will be set and the cursor will be placed behind it. If you
enter <Return> or <Enter> afterwards the cursor will be placed
in the next line and it will be moved the indicated amount
96 StormC - the professional choice

Options of Text
◆

of spaces or tabulator to the right. If you enter one or more
characters instead of <Return> or <Enter> the function will be
terminated and after the next input of <Return> or <Enter>
the cursor will be placed in the following line just under the
bracket.

If all these explanations seem to be confusing, please take
some time to use the functions yourself. This way you will
see that all these settings are actually very simple in use.

Dictionaries and Syntax
Text colouring When you chose this settings page you will see two lists of

gadgets. The first group is called "Dictionaries" the second
"Syntax".

Dictionaries
In this group you will find a list of gadgets to control the use
of dictionaries for text colouring. The dictionaries are stored
in the drawer "StormC:StormSYS/Dictionary" and you
can load them with the editor.

Pre-processor
"Preprozessor.dic"

Here you will find all the defines of constants, that means
everything that starts with "#define".

C/C++ Symbols
"C Symbols.dic"

This dictionary contains the C type-definitions like "auto",
"sizeof", ...

C/C++ Libraries
"C Library.dic"
StormC User Manual 97

5 STORMED
◆

This includes all ANSI C and C++ standard functions.

AmigaOS Types
"Amiga Types.dic"

In this dictionary you will find the Amiga specific types like
"ULONG", "STRPTR", ...

AmigaOS Functions
"Amiga Functions.dic"

This dictionary contains a list of all names of AmigaOS
functions.

The following tree entries are for user-defined dictionaries.
They do not contain any settings. The files are named "User
1.dic", "User 2.dic" and "User 3.dic".

If you activate the functions here the words of the texts in
the editor will be marked in various colours according to the
colour definitions of the dictionaries.

Syntax
On the right side of the settings page there are controls for
further colouring of the editor.

C Comments A comment in C begins with "/*" and ends with "*/".
Comments might be longer than one row, but the must not
contain further comments. As soon as you type "/*" the
following text will be coloured. This will end when you enter
"*/".

C++ Comments C++ comments are finite to one row. It will be marked with
"//". There is no marker for the end of such a comment.

String Constants The marking of a string constant will start with a character
you enter with <Shift>+<2>. It will be ended with the same
character.

Character Constants Character constants will be marked with a single "‘"
(<Shift>+<Ä>).

Number Constants All numbers that are not contained within quotation marks
or semi-colon will be coloured by this function.
98 StormC - the professional choice

Options of Text
◆

Colour Settings
The settings of colours will be made in the file
"StormSettings.ED".

For example: ...

Only the lower 5 rows of this settings file are of interest. The
definition has the following setup:

1. foreground colour (RGB)
2. background colour (RGB)
3. foreground index
4. background index
5. softsyle

The separation into these values has the advantage that
AmigaOS 3.0 and above can use palette sharing. The OS
function will look to see whether there is the requested (or
other suitable) colour it can use. AmigaOS 2.1 and older will
use fixed colour indexes. That is the reason for both methods
used here. If you use AmigaOS 2.0 or older the colour used
depends on the colour settings you made on Workbench.
AmigaOS 3.0 and above will try to get the colour you
requested or a colour that is close to this one. The result
might not be as good as you expect, but this is a common
problem on computers with only a few colours available.

File Saving Settings

To prevent the saving of text with spaces at the end of some
lines you can turn on the function "Strip Blanks At End
Of Line".
StormC User Manual 99

5 STORMED
◆

Saving the Settings
All the settings you made will be saved as Tool Types of your
text. If you want these settings to take effect on every new
text you create you must activate the menu item "Project/
Save as Default Icon".

Keyboard Navigation
Most of the actions of the editor can be activated by special
keys. The following paragraphs will give you an overview
about the keyboard navigation.

Cursor-Keys
You can move the cursor by the use of the cursor-keys and
the regular combinations with <Alt>- and <Shift>-keys.

<Alt>+cursor left / right will move it to the beginning of the
word before or after the current cursor position. <Alt>+cursor
up / down will move to the beginning or end of the text.

<Shift>+cursor left / right will move to the start or end of the
line. <Shift>+cursor up /down will turn over one page up or
down.

<Return>, <Enter>, <Tab>
When you hit <Return> and the cursor stands in a text line,
the line will be split. When you enter <Return> at the
beginning of a line a spaced line will be inserted before this
line. When you enter <Return> at the end of a line a spaced
line will be inserted after this line.

These actions will be the same when you enter <Enter>
instead of <Return>.

Using the <Tab>-key will insert 3 spaces or the value you set
in the text settings. Using Tabulators will improve the
structure of your source so you can read it better.

Undo / Redo
One of the most important functions of a text editor is the
possibility to undo other functions like editing or deleting
text. Redo is the reverse function of Undo. So if you typed a
text and entered "Undo" it disappears. When entering "Redo"
it will appear again. StormED offers unlimited Undo/Redo.
100 StormC - the professional choice

Block Operations
◆

For example:

Type the following small program into the editor window:

while (!sleep)
sheep++;

Hit the keys <Right Amiga>+<Z> (this is the same as the menu
item "Edit/Undo"). The text will disappear character by
character. Now hit <Right Amiga>+<T> (this is the same as
the menu item "Edit/Redo"). The text will appear again.

Block Operations
With the help of block operations you can move or copy
small or large parts of your text. These functions are very
important in an editor. A block is an area of the text that is
marked. The fundamental block operations are ...

Mark, Cut, Copy and Paste
To execute a block operation you must first mark a block.
Choose the menu item "Edit/Mark" and move the cursor.
The area between the starting point of the cursor and its
current position will be inverted. This shows you that this
area is marked. All block actions will effect this area only. If
you choose the menu item "Edit/Mark" again the marking
of the text will disappear.

"Cut" will cut out the marked block of the text and copy it
to the clipboard. The block is no longer visible. "Copy" will
copy the marked block to the clipboard. It will remain
visible. "Paste" inserts the contents of the clipboard at the
current position of the cursor into the text.

For example:

• Please load a large text file into the editor window.
• Move the cursor to the middle of the first line of the text

and choose menu item "Edit/Mark".
• Move the cursor down a few lines. You will see an

inverted area of your text.
• Choose menu item "Edit/Cut" and the marked block

will disappear. The rest of your text will be moved to fill
the free area.

To restore the old text you must paste the clipped block from
the clipboard to your text. But remember that you should
StormC User Manual 101

5 STORMED
◆

not move the cursor, because it marks the position for the
insertion of the block. So if you move it, the block will be
inserted in a different place.

• Now choose menu item "Edit/Paste". The block will be
inserted from the clipboard and your text will return.
The cursor will be at the end of the block.

To insert the block at a different place within your text,
move the cursor to the desired position and choose "Edit/
Paste" again.

When you want to copy a certain block of your text, just
mark it and choose "Edit/Copy". The text is not affected,
but it is copied to the clipboard.

The Mouse
Using the mouse you can move the cursor to any position of
the text. Just move it to the right place and hit the left button
of the mouse. As long as you hold the left button down the
cursor will follow your mouse-movement and the text will
be marked and inverted. It is the same as using the menu
item "Edit/Mark". When you move the mouse cursor to the
top of the window while pressing the left button, the text
will be scrolled in this direction. After you release the left
button of the mouse the block will still be marked until you
click it once more.

Find and Replace
Find and replace is one of the basics features of any editor.
You will get a requester when you choose the menu item
"Edit/Find&Replace".

Type the word you are looking for into the first string gadget.
If you don’t want to replace it, leave the next string gadget
unfilled and hit the button "Find".
102 StormC - the professional choice

Find and Replace
◆

Direction
You can choose the direction for the search from within a
cycle gadget. You can search "Forwards", "Backwards"
and "Whole Text". "Forwards" and "Backwards" will
start from the current position of the cursor. "Whole Text"
does not care about the cursor position and looks for your
key-word through the whole text.

Mode
This option defines how the search word is compared against
the text.

TextThe key-word will be searched throughout the text. A key-
word like "port" would be found in words like "userport"
and "ports".

Whole WordThis would only find words that exactly match the key-
word.

From Beginning of
the Word

This would look for words which begin with the key-word.
So "ports" would be found, but not "userport".

From the End of the
Word

This would look for words which end with the key-word.
"Userport" would be found, but not "ports".

From Start of LineThis would only look at the first word of a row.

From End of LineThis would look at the end of the row only.

Ignore Upper/Lower Case
This would ignore whether the word is in upper or lower
case.

Ignore Accent
This would ignore whether a word contains accents or not.
Accents would be treated as they were normal letters. E.g.
"RenÈ" and "Rene" would be the same.

Find
This starts the search process. If there is no matching word
you will hear a "display beep".
StormC User Manual 103

5 STORMED
◆

Replace
If you choose "Replace" the function will look at the first
match of text and key-word. Then it would replace this
matching text with the key-word and continue the search.

Replace All
This would do the same as "Replace", but it would not stop
until it has searched (and replaced) the whole text.

The "Find&Replace" requester will stay open as long as you
are working with it. This is a non-modal requester. You can
always close it with the close gadget or by hitting <ESC>-key.
104 StormC - the professional choice

Compiler
6 ◆
6 Compiler

espite computers are getting faster and faster you do not want to forego on
a fast compiler. This does not only mean speed at compiling but speed,
which benefits through used optimisation to speed up programs.

StormC offers both in an excellent way. It is a very fast compiler with outstanding
optimisation. C++ sources will be compiled to machines-code in one pass. Pre-compiled
header care for tremendous compiler speed at large projects.

You will learn more about special features of StormC in this chapter.

SPECIAL FEATURES OF STORMC ... 107

DATA in Registers .. 107

Parameters in Registers .. 108

Inline Functions .. 108

The Pragma instructions .. 110
Data in Chip and Fast RAM .. 110
AmigaOS Calls .. 111
The #pragma tagcall .. 111

The #pragma priority .. 112
Constructors and Destructors in ANSI C ... 113
Constructors and Destructors in C++ ... 113
Priority list .. 113

Joining Lines .. 114

Predefined symbols .. 115

Build your own INIT_ and EXIT_ routines .. 117

Use of Shared libraries .. 117
Prototypes .. 117
Stub Functions .. 118
#pragma amicall .. 118
Forced opening of a Amiga library ... 122

PROGRAMMING OF SHARED LIBRARIES .. 123

The Setup of a Shared Library .. 123
The #pragma Libbase ... 124
Register Setup ... 124

D

StormC User Manual 105

6 COMPILER
◆

Shared Library Project Settings ...125
The setup of FD files ..125
The first four Functions ...126
Home-made Initialisation and Release ..127
Important hints to Shared libraries ...128

PORTING FROM SAS/C TO STORMC ..130

Project settings ..130

Syntax ...131

Keywords ...131

CLI VERSION OF THE COMPILER ...134

The instruction ...134

Options ..134
Assembler source ...136
Pre-processor: Definition of symbols ...136
 Pre-processor: Include files ...137

Compiler mode ...137
ANSI C or C++ ..137
Exception handling ...137
Creation of Template functions ...138

Code creation ..138
Data model ...138
Code model ...138
Optimisations ...138
Code for special processor ..140
Code for linker libraries ...141

Debugger ..141
RunShell ..141
Symbolic debugger ...141

Copyrights ..141

Warnings and errors ..141
Format of the error output ..141
Colours and styles ...142
Error file ..142
Optional warnings ..143
Treat warnings like errors ...144
Core memories ..144
Pre-compiled header files ..144

Summary ...145
106 StormC - the professional choice

DATA in Registers
◆

SPECIAL FEATURES OF STORMC

DATA in Registers
Each processor manages not only the RAM, but has in
addition also some internal processor registers, in which it
stores results of calculations and so on. The access to these
registers is considerably more quicker than a RAM operation.
Since the processors of the 68000-family are richly equipped
with registers programmers will take the unused registers to
archive often used variables into them to increase speed.

Fortunately you has introduced a flexible and machine-
independent notation for it in the ANSI C standard. The key
is a memory class named "register", which can be used
analogue to "extern", "auto" or "static".

Register variables may be declared only within functions.
Otherwise you can use them freely: You may declare as many
variables as you want form different types as "register",
the compiler decides later on which files to store in a register.
Integer and pointer or reference variables may be put into
registers, whereby numeric types are stored in data and
pointer types in address registers.

However you should be careful not to use registers too
extensively because the processor will need at least one
register for practically all operations. When you are using too
many of them for variables it must evacuate them sometimes
for a short time on the stack and load them later again. Then
you can not expect an increase in speed. As a rule you should
not use more than four integer and two pointer variables as
"register" in one function.

StormC does not use your statements obligatorily. Indeed it
takes them only as reference. The optimiser of StormC can
decide essentially better, which variable to which time in
which register is to be loaded best. Furthermore StormC uses
the registers repeatedly in a function, which you can not
make by using the key-word "register".
StormC User Manual 107

6 COMPILER
◆

Parameters in Registers
This does not
corresponds to
C++ standard!

You should insert this
feature therefore as
carefully as possible, since
the programs are otherwise
no more portable. It is best
to use such parameters only,
if you want to bind finished
functions, which expect
their arguments in registers,
to a program. E.g. the
AmigaOS functions or
assembler routines, which
can be ported badly
anyway.

 As small expansion of the C++ standard StormC offers the
possibility to also submit parameters in registers. Sometimes
this leads to certain speed increases. You simply have to
write the symbol "register" before the parameters of the
declaration of the function, e.g.

int Inc (register int i, register int j);

There are even two possibilities to prescribe the compiler in
which registers it should put the parameters: Either you
rename the parameter variable as a 68000 register, e.g.

void f(register int d0, register char *a2)…

or you set the desired register name with "__" behind the
key-word "register"

void f(register __d0 int i,register __a2 char s)…

If you are instructing the compiler this way which registers
it should use for variables you should consider previously
about the things you are doing there.

For your own C++ functions this feature is absolutely taboo,
because you don’t know whether the above declared
function would become possibly very slow because it needs
the register "d0" constantly but it must store and restore the
content of the registers variable every time. You should use
such register regularise for declaration of imported assembler
and system functions only.

Inline Functions
Each function call represents a considerable expense. First
the calling code must arrange some space for the arguments
on the stack and store them there. Then a "JSR" jump
follows into the function, which has to reserve the necessary
memory for their own data on the stack before. And it has to
store the contents of all processor registers, which are
changed by it. At the end of the function the old register
contents are restored again. The local variables are removed
from the stack; a "RTS" jump back to the calling program is
following. At least the arguments must be taken from the
stack. There you as programmers might get into moral
conflicts: Should you define a small function now or insert
108 StormC - the professional choice

Inline Functions
◆

the content of this function every time into the program? A
typical example is the maximum function:

int max(int a, int b)
{ if (a>b)

return a;
else
return b;

}

Instead of the function call "max(x,y)" you could as an
alternative insert "(x>y ? x : y)" each time. This would
be of course more quicker, but not more readable. For such
cases C++ has a nice feature that StormC now offers in ANSI
C mode as well: "Inline" specification.

If you set the key-word "inline" (in ANSI-C "__inline")
before the first declaration of a function, this function
definition will be inserted into the source at each time this
function is called. Syntactically or semantically the program
is not changed thereby: You declare simply

inline int max(int a, int b)
{ if (a>b)

return a;
else
return b;

}

Then you can use "max" like a normal function. The
difference lies solely in the generated code. With "inline"
the content of "max" will be copied every time into the
calling code.

A lot will be saved thereby: There must neither be a "JSR"
into the function nor a "RTS" back. There must be no storing
and restoring of the contents of registers. The function must
not arrange its own data "frame" on the stack. The result not
given back in register "d0". * And the compiler will still have
many possibilities for optimisations.

An inline function is not created once only, but in many
copies, for each call a separate one. It is obvious that
"inlining" will blow up programs tremendously and you
should use it carefully. The compiler however may ignore
that "inline".
StormC User Manual 109

6 COMPILER
◆

StormC handles this in a better way: what you want to be
"inlined" will be "inlined". Still there can be situations,
in which an inline must be created on completely usually
manner, e.g. if you take the address of a such function if it is
used already before it was declared if an inline function is
recursive.

All this is allowed because you can use an inline function
exactly as each other function.

If an inline function is created of one the above reasons, it
naturally has internal linkage. So other modules will not
notice whether the function was actually generated in a
compiler. Therefore similar instructions like for the memory
class "static" will apply for "inline". The declaration
sequence

inline void f(); void f();

is allowed,

void f();
inline void f();// ERROR

is not allowed. By the way inline is not a memory class (like
"static" or "external"), but a "function
specification".

The Pragma instructions
Despite the ANSI specifications each compiler has its own
peculiarities. These specific things are introduced with the
key-word "#pragma".

"#pragma" lines will be interpreted by the pre-processor like
"#include" lines. With "#pragma" you can realise compiler
specific functions, which are not standardised explicitly.

Compiler mode "#pragma -" is a non-standard feature
switches StormC into ANSI C mode.

"#pragma +" switches the compiler to translate the source
in the C++ mode.

Data in Chip and Fast RAM
The architecture of the Amiga is somewhat unorthodox. So
there are two or sometimes even more different types of
110 StormC - the professional choice

The Pragma instructions
◆

RAM. Normally programmers are only interests in using
"Chip- or Fast-RAM" because they must care for that
graphic data are stored in chip memory. StormC therefore
offer the pragmas "chip" and "fast".

All after the line

#pragma chip

declared static datas will be loaded into Chip RAM,

#pragma fast

switches back to normal mode. Now data will be stored
somewhere, however Fast RAM is the preferred place.

AmigaOS Calls
The AmigaOS functions are called with the #pragma amicall.
This declaration exists in the essential of four parts:

• The name of the basis variable.
• The offset as positive integer.
• The function name, which must be declared already. For

reasons of the definiteness this function name may not
be overloaded.

• The parameter list, represent through a corresponding
amount of register names in parenthesis.

An example:

#pragma amicall(Sysbase, 0x11a, AddTask(a1,a2,a3))
#pragma amicall(Sysbase, 0x120, RemTask(a1))
#pragma amicall(Sysbase, 0x126, FindTask(a1))

Normally you will never have to write such declarations by
your own, since everything is included within the Amiga-
Libraries.

The #pragma tagcall
At some OS calls so-called TAG lists will be submitted as
function parameters. These are not really OS functions but
STUB functions, which are declared with ellipse. You are
using these functions, since the submission of TAGs as
function parameters is to be programmed very simply. The
use of an array would be of course be a good way too, but it
causes more work on typing.
StormC User Manual 111

6 COMPILER
◆

An example:

The pragma definition of the function "CreatGadgetA()"
from the Gadtools-Library looks as follows:

#pragma amicall(GadToolsBase,
0x1e,CreateGadgetA(d0,a0,a1,a2))

#pragma tagcall(GadToolsBase,
0x1e,CreateGadget(d0,a0,a1,a2))

You find the corresponding prototype in the drawer "CLIB".
They contain the following:

struct Gadget *CreateGadgetA(unsigned long kind,
struct Gadget *gad, struct NewGadget *ng,
struct TagItem *taglist);

struct Gadget *CreateGadget(unsigned long kind,
struct Gadget *gad,struct NewGadget *ng,
Day tag1, …);

With the call

gad = CreateGadget(CYCLE_KIND, gad, ng,
GTCY_Labels, mlabel,
GTCY_Active, 3,
TAG_DONE);

you would "so to speak" inline create a Stub function, which
pushes all Tags on the stack but in reality calls the function
"CreateGadgetA()".

For compatibility reasons the most pragma calls of the SAS
compiler can be used too.

The #pragma priority
StormC supports as a C++ compiler the automatic call of
initialisation and exit functions before and after call of
"main()" function.

Whether stdio
will be initialised
or not will not

depend on startup-code,
but if the program uses
printf() or similar I/O
functions.

C++ uses this feature to call the constructors and destructors
of global variables. ANSI C uses this feature for the automatic
opening of shared libraries or for the initialisation of
standard I/O.

The function table, which is processed thereby, is created
first through the linker. Functions, which own a certain
name, will be gathered by the linker to a table of
112 StormC - the professional choice

The #pragma priority
◆

initialisation and exit functions. The startup-code must call
the function "InitModules()" before the call of "main()"
function and to call "CleanupModules()" after "main()"
function.

The advantage of this dynamic concept is the flexible setup
of the startup-code. The resulting program is always as small
as possible. The thereby available startup-code is applicable
for all programming projects. The large-scale and error-
susceptible selection of a startup-code according to compiler
options is not necessary any more.

Constructors and Destructors in ANSI C
Functions that are called at initialisation must be named
"INIT_n_anything(void)", the exit function must be
called "EXIT_n_anything(void)". For n is a number
between 0 and 9. This sets the priority of the function. The
smaller the value the earlier the initialisation and the later
the exit function will be called. "Anything" can be replaced
through each arbitrary name, which may contain further
"_".

Constructors and Destructors in C++
A C++ compiler creates automatically such fitting functions
for each global variable. In these functions the construction
and destruction of variables will take place. Generally the
compiler uses the priority 8 for these "INIT_" and "EXIT_"
functions.

However the exact sequence of the calls, that means the
priority of the "INIT_" and "EXIT_" functions, may be of
importance so there exists that "#pragma priority". You
can determine the priority of the global variable of the
module.

Priority list
Thereby you should orient yourself on the following list of
the priority. This tells you the use of the priorities in
"storm.lib":

Priority 0:This priority is reserved for functions, which initialise the
StormC library (particularly data structures of the library). If
you want to initialise a data structure (e.g. a jump table), that
does not access to any OS resources, you should use priority
0 also.
StormC User Manual 113

6 COMPILER
◆

Priority 1: The most important shared libraries are opened:

"dos.library" version 37, "utility.library" version 37.

Priority 2: All shared libraries, which are necessary for the function of
the program, are opened. The program is aborted, if the
opening fails. Here all libraries are listed, which are delivered
since AmigaOS V2.04 (V37).

Priority 3: Here all libraries are listed which are delivered since
AmigaOS V38 or later or these that do not belong to standard
delivery of the system. You do not know whether these
libraries exist the concrete system. These libraries are opened
with the minimal version. If the opening should fail it
outputs no error message.

Priority 4: With "malloc()" or "new" reserved memory will be freed.

Priority 5: Further library resources are reserved and freed, e.g. global
and temporary files.

Priority 6: There are some cleanups before the resource are freed, e.g.
flushing of file buffers etc.

Priority 7: Unused, free for usage.

Priority 8: Constructors and Destructors C++ cases are set to this
priority by default. Each global variable, whose type has a
Constructor or a Destructor, creates a call of an "INIT_" or
"EXIT_" function. The priority can be changed by "#pragma
priority".

Priority 9: The functions, which were announced with "atexit()", are
called.

Joining Lines
It is absolutely alike in C and C++ where individual lines end.
But the pre-processor must get each instruction exactly in
one line. Naturally there will be the case that a line becomes
very long, e.g. through an extensive macro definition. For
this case there is the backslash. If the is a "\" at the end of a
line this is joined with the following one.

For example:

#define SOMETHING \
47081115
114 StormC - the professional choice

Predefined symbols
◆

This is a valid macro definition, for "47081115" is pulled here
in the preceding line.

Predefined symbols
The pre-processor has many predefined macros. Some of
them are ANSI C standard others are elements of C++ or
particular peculiarities of StormC. These macros can not be
redefined.

__COMPMODE__

It is defines with the "int" constant "0" in C mode and "1"
in C++ mode.

__cplusplus

StormC defines the macros "__STDC__" in C and C++ mode.
If you wants to check, whether if compiling in StormC is
done in C++ mode this must be made with the macro
"__cplusplus".

__DATE__

The macro "__DATE__" delivers the date of the compilation.
This is very useful, if you want to give a program an unique
version number:

#include <iostream.h>

void main()
{ cout « "version 1.1 from that " __DATE__",
"__TIME__" clock\n"; }

The date has the format "month day year", e.g. "Mar 18 1997"
and time of day will be "hour:minute:second".

__FILE__

This macros contains the name of the current source file as
a string, e.g.

#include <stream.h>
void main()
{ cout « "That stands in line " « __LINE__ « " in
file " __FILE__ ".\n";}
StormC User Manual 115

6 COMPILER
◆

The value of the macro "__FILE__" is a constant string and
can be joined with other strings standing before or behind it.

__LINE__

The macros "__LINE__" delivers the line number, in which
it is used, as decimal "int" constant.

__FUNC__

The macro "__FUNC__" delivers the identifiers of the
translated function (Aztec compatible) in ANSI C mode. In
C++ mode it delivers the qualified function name along with
the parameter list.

__STDC__

This macros delivers in all ANSI C compatible
implementations the numerical value 1. This should tell you
whether the compiler supports this standard. Otherwise
"__STDC__" is not defined.

__STORM__

You may want to know which compiler and version one is
using. Therefore StormC defines the macros named
"__STORM__".

__TIME__

(see "__DATE__")
116 StormC - the professional choice

Build your own INIT_ and EXIT_ routines
◆

Build your own INIT_ and EXIT_ routines
If you are writing your own "INIT_"- and "EXIT_" functions
you should be aware that a call of the function "exit()"
from an "INIT_" function will call all "EXIT_" functions.

There is no allocation between "INIT_" and "EXIT_"
functions, this means that there is no "INIT_" function that
belongs to a certain "EXIT_" function with the same name.
That applies for each global variable in C++ also. That means,
that a destructor must work well even if the matching
constructor was not processed. You can exploit thereby, that
the memory of the variable is initialised always with 0, if you
have not changed initialisation. Now you can decide simply,
whether the constructor of the destructor was processed
already or not.

Particularly in C++ you should avoid that constructors of
global variables do an exception because they can not be
enclosed with a Try-block. Therefore this exception is always
treated as unexpected exception, which leads to a hard
interrupt of the program and the user will not know why the
program does not work.

Use of Shared libraries
The AmigaOS is essentially built of several shared libraries.
These "divided libraries" offer functions which can be called
by each program after opening them.

To each shared library of the AmigaOS there are some C
headers, which allow the use of the library.

Prototypes
First there is the file with the prototypes of the functions.
You will find them in the directory "StormC:include/
clib". The files are named like "exec_protos.h", that is the
name of the library (here: "exec" for the library
"exec.library") with appended "_protos.h".

These prototypes define C functions, which are always called
by the compiler in the way that it puts the parameters of the
function on the stack and makes a subroutine call at the
matching function. This function must always be linked to
the program. Therefore it is not allowed to call the shared
library directly because shared libraries are not linked
permanently to the program, but are opened at the start of
StormC User Manual 117

6 COMPILER
◆

the program. Besides functions of shared libraries always
expect their parameters in CPU registers and not on the
stack.

This problem can be solved on two ways. Either you use Stub
functions or the special Amiga-like "#pragma amicall".

Stub Functions
The linker library "amiga.lib" contains a so-called Stub
function for every function of the OS libraries. The stub
function takes the parameters from the stack, loads them
into the right CPU registers and then calls the right function
of the shared library.

This method has the disadvantage of an additional function
call, which swells your program and decreases the execution
speed strongly.

#pragma amicall
Alternative to stub functions you can use "#pragma
amicall" which differs for every compiler. There are the
following two methods:

There is a file to each library which describes the calling of
each function of a shared library. Which parameter must be
written into which CPU register is explained particularly.
The compiler now can call the shared library functions
directly without the use of "amiga.lib" .

To get a good
comparability
with SAS/C and

other compilers there exists
a drawer named
"StormC:include/pragmas".
It contains files which have
different file names than
these of "StormC:Include/
pragma".

These files can be found in the directory "StormC:include/
pragma" and they are named like "exec_lib.h" (name of the
library with appended "_lib.h"). These files will load the
prototypes from "StormC:include/clib" automatically, so one
"#include" of the pragmas will be enough.

You can tell the prototypes to load pragmas as well. That is
practical, if they have an older source, which uses only the
prototype and contains no includes for pragmas. For this the
pre-processor symbol "STORMPRAGMAS" must be
defined. You can define the symbol simply in the compiler
settings on "Pre-processor".
118 StormC - the professional choice

Use of Shared libraries
◆

In this context
one says
"pragma files" or

"the compiler XYZ knows
Pragmas". That is very
inaccurate, for the
instruction #pragma has
nothing to do with the call
of shared libraries, for it is
ANSI C standard. Indeed
"#pragma amicall" is very
important and older
compilers on the Amiga
knew this "#pragma" only.
Therefore "#pragma" has
become the generalised
expression for the direct call
of shared libraries.

Furthermore nearly every library has at least one include file
which describes the data structures which are required for
the library.

Example:

#include <pragma/exec_lib.h>
#include <exec/tasks.h>
#include <stdio.h>

void main()
{
struct task *me = FindTask(NULL);
printf("The structure has address %p.\n",me);
}

This program uses the function "FindTask()" of
"exec.library" to get a pointer to the control structure of
the task and it outputs their memory address.

The "exec.library" has a particularity to all other libraries.
It will not be opened by the program, because it is always
open and the functions can be used immediately.

This is different if you have a look at e.g. "intuition
.library".

Example:

#include <pragma/exec_lib.h>
#include <pragma/intuition_lib.h>
#include <exec/libraries.h>

external struct Library *intuition base;

void main()
{
 if((intuition base =
OpenLibrary("intuition.library",37)) != NULL)
}

 DisplayBeep(NULL);
CloseLibrary(intuition base);
};

};
This program makes nothing than flashing the screen.
Maybe it will play the 9th Symphony of Beethoven too if you
have reconfigured system beep.
StormC User Manual 119

6 COMPILER
◆

To get it doing this you must open "intution.library"
version 37. That means that you must have at least AmigaOS
2.04 installed. The function "DisplayBeep()" is called and
the library will be closed at the end.

You have to not three things thereby:

1. Use the right version number because the compiler can
not recognise whether you open library version 37 but
used a function available from version 38 or later. This
will crash a computer running an older operating system.

2. Only call functions from those libraries that you really
opened before. Several reasons can prevent opening:
There is no library on the computer with the indicated
name or it exists one with a smaller version number. Or
there is not enough free memory. And there are still
many other reasons!

3. Close the library at the latest at the end of the program.
For only then the library can be removed from memory
again if AmigaOS need it (presupposed no other program
uses this library at the same time!).

A further example:

#include <pragma/intuition_lib.h>

void main()
{

 DisplayBeep(NULL);
};

This program will run too, presupposed you have linked it
with "storm.lib".

Hmm? - did not we just say that you should open libraries
before use. Yes, you should and that is exactly what this
program is doing.

Since StormC is a C++ compiler too there are possibilities to
automatically call functions from libraries on request at the
program start and end. The library "storm.lib" contains
such functions, which open and close a library on request.
This means whenever you are calling a function of a special
library it will be open automatically and closed at the end of
the program. The linker library "storm.lib" knows all OS
120 StormC - the professional choice

Use of Shared libraries
◆

libraries up to version 39. Thereby two different strategies are
pursued how to treat a failure at opening:

1. Libraries of Kickstart version 37 are opened with just this
version and cause an error message and cancellation of
the program, if the opening fails.

2. Libraries of later OS versions (e.g. "locale.library")
are opened with the smallest version (here
"locale.library" version 38) and the program is
continued when the library can not be opened.

You are responsible for calling no functions which are not
available on the used OS and you must not call functions
from libraries which could not be opened.

The following two code fragment will help you testing this:

#include <exec/libraries.h>
#include <graphics/ratsport.h>
#include <pragma/graphics_lib.h>
#include <graphics/gfxmacros.h>
external struct Library *GfxBase;

void setoutlinepen(struct RastPort *rp, ULONG pen)
{
if(GfxBase->lib_Version >= 39)//min. OS 3.0
{
SetOutlinePen(rp,pen)
}

else
{
 SetOPen(rp,pen);
};

};

This code distinguishes between AmigaOS 3.0 and older
versions to set the pen number for the borders correctly.
Older OS version have a macros for this only but as from V39
there exists a function.
StormC User Manual 121

6 COMPILER
◆

The printed
listing is not a
real program,

since the main() function is
missing. If you want to try
this function simply make
an own main() function for
it.

#include <libraries/locale.h>
#include <pragma/locale_lib.h>
#include <exec/libraries.h>
external struct Library *LocaleBase;
char yday[80];

STRPTR yesterday()
{ STRPTR retval = NULL;
if (LocaleBase != NULL)
{
struct Locale *locale = OpenLocale(NULL);
if (locale)
{
STRPTR s = GetLocaleStr(locale,YESTERDAYSTR);
if (s)
{
strcpy(yday,s);
retval = yday;
};

CloseLocale(locale);
};

};
if (retval == NULL)
retval = "Yesterday";

return retval;
}

This function delivers the string "Yesterday" of the
national language chosen at local settings or "Yesterday" if
something goes wrong. If you are running AmigaOS 2.04 it
is to be foreseen that the program does not deliver the
desired result because locale library is provided with
AmigaOS 2.1 (V38) first.

Surely it is not
skilful to open
and close locale

structure every time but we
want to show the principles.

Forced opening of a Amiga library
If you really want to force opening of the library in a higher
version (e.g. "graphics.library" version 39) or if you want
to open it anyway there exists of course the possibility to
open and close the library "by hand". Indeed you should
note that you have to declare the basis pointer variable (e.g.
"struct library *GfxBase"). Otherwise the automatic
opening mechanism comes into confusion. You can use the
automatic opening mechanism as well and test the
"main()" function at the beginning and terminate the
program when required.
122 StormC - the professional choice

The Setup of a Shared Library
◆

PROGRAMMING OF
SHARED LIBRARIES
The creation of an own shared library can be very useful. As
soon as several programs use equal code or some functions
should be available to other programs or programmers it is
meaningful to build a shared library instead of using a
collection of functions.

StormC supports you at this task so you must not care about
technical details. The creation of a shared library will not be
more expenditure than a building a linker library.
Nevertheless you should know about the setup of a shared
library to avoid some possible errors and to use StormC
optimally.

The Setup of a Shared Library
A shared library exists essentially of a basis structure
(therefore at least a "struct library") and a function table,
in which each function of the shared library has an entry.
Besides each shared library has a version string, which you
can query with the command "version" from the CLI.

The basis structure is at least one "struct library" but you
can add further elements. That is meaningful if the
programs, which use the shared library are accessing on
some data without having to call a library function.

You should progress to the rule to use public data very
sparingly, for the accesses through other programs, whether
reading or writing can not be record in the library. You must
also pay attention in future versions of the library that these
data will keep the same sense, which is not always too
simple.

It is safer and more simple for you to hold the data of the
library in normal global variables. The access should be by a
function, even if these are only very small functions, which
deliver the value of a variable. The "dos.library" uses this
principle intensely since AmigaOS version 36 e.g. to make
accessing of structure more save.
StormC User Manual 123

6 COMPILER
◆

The #pragma Libbase
The name of the basic structure must be told the compiler at
a position in the source. This will be done with "#pragma
libbase".

If you have
divided your
library in several

modules #pragma libbase
should be called in one
source only.

For example:

#include <exec/libraries.h>

struct MyLibBase
{
struct Library library;
ULONG second_result;

};
#pragma libbase MyLibBase;

Register Setup
The functions of a shared library receive their arguments
from a CPU registers, data like "int", "LONG", "char" etc. in
data registers ("d0" to "d7") and pointers in address registers
("a0" to "a5"). You should count data register starting from
"d0" and address registers starting from "a0". But you
should forego "a5" since this register is used by almost every
C function to set up a so-called "stack frame". If a shared
library uses "a5" as a parameter you will probably get
problems when a function is called by "#pragma amicall".
In this case you should write a stub function for this function
in assembler and forego the "#pragma" call.

Despite this restraint the address registers "a0" to "a4" are
available and that should suffice for nearly each function.

To be able to access to entries of the basis structure, a pointer
to the basis structure in register "a6" must be indicated as a
parameter. This parameter is set automatically at the call of
a function of the shared library.

An example:

ULONG add_two(register __d0 ULONG a,
register __d1 ULONG b,
register __a6 struct MyLibBase *base)

{
 ULONG retval = a + b;
 base->second_result = retval;
 return retval;

};
124 StormC - the professional choice

The Setup of a Shared Library
◆

Shared Library Project Settings
To create a shared library you must create a new project,
which contains of at least one source code with some ANSI
C functions, a FD file, which describes the register use of the
functions and an entry for the program name, which always
has the ending ".library".

In the settings of the project you choose at the page "C/C++
options" "Large Data Model" and at "Linker Options
1" naturally "Link As Shared Library". Besides you can
determine the "version" and "revision" of the library.
"Linker Options 1" has two fields for this.

The setup of FD files
The FD file looks as follows: their name always uses the suffix
".fd", so it is placed in the right section ("FD files") of the
project. "FD" or ".fd" stands for "function description").

The file is composed of individual lines, which begin either
with a "*" (commentary) or with a "##" (special command).
Otherwise the line must contain a valid function
description.

Example:

##base _MyLibBase
##bias 30
##public add_two(a,b)(d0,d1)
##end

The command "##base" marks the name of the basis
variable, whereby the name is indicated as linker symbol
with leading "_". In your C program you will write this
variable without the leading "_" character.

The command "##bias" sets the offset of the function. In
the function table the functions are standing one after
another. The first function has the offset -6, the next
function the offset -12, the third the offset -18 etc.

With "##bias" you can set this offset newly, indeed you will
give them positive values. Each function increases the
positive offset with 6, for in the function table stands a "jmp
xxx.L". That is a assembler instruction which jumps at the
real beginning of the function. This assembly instruction
StormC User Manual 125

6 COMPILER
◆

requires just 6 byte. Normally you sets this "##bias" on 30,
for the first 4 functions are reserved.

The command "##public" marks the following function as
publicly accessible. The command "##private" not used in
the above-mentioned example marks the following
functions as private.

The command "##end" terminates the function description.
Everything that follows in the file will be ignored.

Before the command "##end" stand the function
descriptions. These exist respectively of the name of the
function, the name of the parameters (which are comma
separated encircled by brackets) and finally the list of
registers. Every parameter is associated with one register. The
parameter of the register a6, which you may have indicated
in your ANSI C function, is not indicated here.

The function description increases "##bias" automatically
at 6. You do not have to set "##bias" newly after each
function.

Restraints Under StormC there is momentarily a restraint.
The command "##bias" can be used no more after the first
function description. Theoretically it is possible, to create a
not coherent function table in the FD file, e.g. because the
function table contains functions, which should be invisible
to the user. Since the FD file should be used for the creation
of a function table it must be coherent.

The first four Functions
Just one word to the reserved first 4 functions. These
functions are called "LibOpen()", "LibClose()",
"LibExpunge()" and "LibNull()". To it comes the
function "LibInit()", which is not called over an entry of
the function table.

The function "LibInit()" will be called and initialised after
loading, therefore at the first open of the library. That means
particularly at StormC, that the automatic constructors or
initialisation functions are called, which will e.g. open other
required libraries. That works equal to normal programs, so
you must not care for the correct initialisation. For C++
programmer the constructors of the global variable are called
too.
126 StormC - the professional choice

The Setup of a Shared Library
◆

The function "LibOpen()" is called at each opening and it
does nothing than to record just this fact. It increases a
counter which indicates how often the library was opened.

The function "LibClose()" is called when closing the
library and it decreases the counter.

The function "LibExpunge()" is always called when the
operating system wants to remove the library from memory.
That happens for example at memory shortage. The library
can be removed only if it was not just opened by a program.
The counter must stand on 0, so you will note how
important it is to close used libraries. A task of the function
"LibExpunge()" is to call the automatic destructors or exit
functions. Thereby e.g. the automatically opened libraries
will be closed again. At use of C++ the destructors of the
global variables will be called.

The function "LibNull()" does nothing at all and it is
reserved for future extensions.

These five functions are in the linker library "storm.lib".
You can overwrite them at any time with your own
functions. Probably you will have to use an assembler for
this. A meaningful and also in C feasible expansion would
be e.g. to overwrite the function "LibNull()" through a
function which makes the library useful for ARexx. How this
will function you must read in suitable literature.

Home-made Initialisation and Release
Just because you want to execute additional tasks at loading
of libraries or when removing them from memory (e.g. the
opening of further libraries or memory reservations), that is
no reason write the functions "LibInit()" and
"LibExpunge()" new. Simply use the possibility to
implement automatic initialisation or exit functions.

If you are using C++ you can do this with global variables,
whose type owns a constructor or a destructor. These will be
called automatically in "LibInit()" or "LibExpunge()".
The execution sequence can be determine with "#pragma
priority" more closely.

Using ANSI C you can simply name the functions as the
linker expects it to call it automatically. An initialisation
function must be named "INIT_n_anything(void)" and an
StormC User Manual 127

6 COMPILER
◆

exit function "EXIT_n_anything(void)". Whereby "n" is a
number between 0 and 9. This number determines the
priority of the function. The smaller the value, the earlier the
initialisation function and the later exit function is called.

Example:

struct Library *DOSBase;
struct Library *intuition base;

INIT_3_OeffneBibliotheken(void)
{
 DOSBase = OpenLibrary("dos.library",37);

Intuition base =
OpenLibrary("intuition.library",37);

}

EXIT_3_SchliesseBibliotheken(void)
{

CloseLibrary(intuition base);
CloseLibrary(DOSBase);

}

Beside these standard functions a shared library still requires
certain tables and data structures, which initialise the shared
library at start. These are situated at the startup code
"library_startup.o", which is used at "linker as
shared library" automatically. This startup code uses
some symbols, which are created by the linker
automatically. Among other things a symbol on the
beginning of the function table and one symbol on the
name of the library and the version string of the library. The
two last symbols can overwritten. They are called
"_LibNameString" and "_LibVersionString".

Important hints to Shared libraries
Here a couple of hints for the development of your own
shared libraries.

First develop you functions completely normal and write a
test program for them. If everything functions to your
satisfaction, transform the project to a shared library, by
removing the test program from the project and write a
suitable basis structure. Of course some project settings must
be changed too.
128 StormC - the professional choice

The Setup of a Shared Library
◆

You have won two advantages by this way: Shared libraries
must be removed from memory before you can exchange
them by a newer version. Therefore you must care that your
test program has closed the shared library and that the old
library is removed by executing "avail flush" from the
CLI. That is much complicated than to simply start the new
program. Besides you can not debug in shared libraries.

Pay attention that your functions are "re-entrant". That
means that several programs can use it simultaneously. That
forbids in general the use of global or static local variables to
store interim results. If you want to receive data over several
function calls you must work in the certain "object-oriented"
way. You know that from "intuition.library": You open
a window and get back a "struct Window *". With this
pointer you can manipulate the window now, until you
close it. Then "intuition.library" receives this pointer at
each function call and can work with the data structure.
Thereby you avoid global variables.

A shared library
should not need
to use large stack

size.

If you need much data locally (e.g. for a large array) you
often use static local variables in "normal" programs. In
shared libraries you should lay these variables on the stack
and if required previously accomplish a "StackSwap()" or
store the data short-term in the dynamic storage, reserved
with "AllocMem()". The third possibility is to protect with
a semaphore the simultaneous use of the static variable
through several programs. Which method you chooses is a
question of the respective situation.
StormC User Manual 129

6 COMPILER
◆

PORTING FROM SAS/C TO STORMC
We have made it a point to equip the StormC compiler with
many important properties of the SAS/C compiler, ie.
support for various SAS-specific keywords and #pragmas.
Nevertheless there may - depending on your programming
style - be large or small amounts of trouble when porting
software from the SAS/C compiler to the StormC compiler.

Please keep in mind that StormC is an ANSI-C and C++
compiler. SAS/C on the other hand is a C and ANSI-C
compiler (the C++ precompiler is not likely to have found
much serious use), meaning that it understands a lot of older
syntax that StormC will not accept. This is likely to cause
trouble when migrating your sources to StormC, unless you
are used to compiling your SAS/C programs strictly in
ANSI mode (using SAS/C’s ANSI option).

Project settings
First of all make sure that the project you build around your
SAS/C sources is in ANSI-C compiler mode.

Try enabling as many warnings as possible, and then adapt
your programs until no more warnings are given when
compiling. This will give you the best chance that your
program will do exactly what you intend it to.

Even for pure ANSI-C projects, switching to C++ later is
recommendable. This will have several advantages:
Prototypes are expected for all functions, and implicitly
converting a void * to another pointer type is no longer
legal.

Although this may necessitate a relatively tiresome rework of
your programs (especially the latter change which affects a
great deal of statements that call malloc() or AllocMem()),
but can give you a great deal more confidence in the
correctness of the program.

The long symbol names in C++ provide additional security
while linking: If a function definition is in any way
inconsistent with its prototype declaration, the linker will
abort with reports of an undefined symbol.

Switching to C++ will also give you the possibility to extend
your program with modern object-oriented concepts, as well
130 StormC - the professional choice

Syntax
◆

as the use of several smaller C++ features (such as the ability
to declare variables anywhere in a statement block).

Syntax
Some SAS/C keywords are not recognized by StormC, others
are supported well, but the more "picky" StormC compiler
only allows them in the typical ANSI-C syntax.

StormC does accept anonymous unions, but not implicit
structs. Equivalent structures are not considered identical. If
you have made use of this feature, you will need to insert
casts in some places.

If this feature is important to you, you may want to consider
moving your project over to C++: Equivalent structs are
nothing but (an aspect of) inheritance in a different guise.

Type matching is much more strict in StormC. This is
especially the case for the const qualifier used on function
parameters. An example:

typedef int (*ftype)(const int *);
int f(int *);
ftype p = f; // Error

For such errors you should either insert the necessary casts,
or (and this is always preferable) write the appropriate
declarations for your functions. After all the const qualifier
is an important aid in assuring the correctness of your
program.

Rest-of-line comments as in C++ ("//") are accepted even in
ANSI-C mode, but nested C-style comments are not. In any
case you can enable the warning option that detects these
dangerous cases.

Accents in variable names are not accepted, nor is the dollar
sign.

Keywords
The use of non-standard keywords is generally best avoided
- at least for programs that you may want to port to another
operating system or a completely different compiler
someday.
StormC User Manual 131

6 COMPILER
◆

StormC makes more use of the #pragma directives provided
by ANSI-C for adapting software to the special requirements
of AmigaOS (eg. #pragma chip and #pragma fast).

For keywords that may not exist in other compiler systems
but are not absolutely necessary, the use of special macros is
recommended:

#define INLINE __inline
#define REG(x) register __##x
#define CHIP __chip

These macros can then be easily modified to suit a different
compiler environment.

Some optional keywords not recognized by StormC can also
be defined as macros:

#define __asm
#define __stdarg

Here’s a list of SAS/C keywords and how StormC interprets
them:

__aligned is not supported. There is no simple way to replace this
keyword, but fortunately it is rarely needed.

__chip This keyword forces a data item into the ChipMem hunk of
the object file. Note that this keyword, like all other
memory-class specifiers and other qualifiers must precede
the type in the declaration:

__chip UWORD NormalImage[] = { 0x0000, }; //
correct
UWORD __chip NormalImage[] = { 0x0000, }; //
error

The latter syntax is not accepted as it is not consistent with
ANSI-C syntax.

In StormC the use of "#pragma chip" and "#pragma fast"
is preferred. Take notice however of the fact that "__chip"
affects only a single declaration whereas "#pragma chip"
remains in effect until a "#pragma fast" is found.

__far and __near are not supported. There is no easy way to replace these
keywords, but they are rarely needed.
132 StormC - the professional choice

Keywords
◆

__interruptis not supported. At the moment all interrupt functions (a
rarely needed class of functions anyway) must be written in
assembler.

__asm, __regargs,
__stdargare not supported and not needed. If you wish to have

function arguments passed in registers, declare the function
with the ANSI keyword "register" or modify the
individual parameter declarations with the "register"
keyword or a precise register specification (eg. "register
__a0"). Otherwise the arguments will be passed on the stack.

__savedsHas an effect similar to SAS/C’s "__saveds". This keyword
has no effect when using the large data model; in the small
data model relative to a4 it saves a4 on the stack and loads
it with the symbol "__LinkerDB", in the small data model
relative to a6 it does the same for a6.

Do not use "__saveds" lightly. It should be used exclusively
for functions that will be called from outside your program,
eg. Dispatcher functions of BOOPSI classes.

In the current compiler version it is recommended to use
only the large data model when creating shared libraries.
Remember that the small data model makes yet another
register unavailable to the optimizer leaving only a0 to a3 -
this can quickly nullify the advantage of using the small data
model if you’re not using a great deal of global variables.

__inlineLike the others, this keyword is accepted as a function
specifier.

This means that their usage in a function definition must
match the prototype.

If an "__inline" function is to be called from several
modules, its definition (not just its prototype) should be
placed in a header file.

__stackextis not supported. Stack checking or automatic stack
extension is not available at this time.
StormC User Manual 133

6 COMPILER
◆

CLI VERSION OF THE COMPILER

There should actually be people who do not like the
integrated development environment. Therefore StormC
can be used as CLI version too. You will only need the
program StormC from the drawer "StormC:StormSYS".

The concept The compiler creates object files from the
sources, which will be bound to a program by StormLink.
Without special option the compiler translates all indicated
sources and writes the object files.

The instruction
StormSYS/StormC main.c text.c unter.c

compiles the three sources "main.c", "text.c" as well as
"unter.c" and creates their object files. Subsequently you
must link the object files with the linker to get a finished
program.

If an error appears at the translation a suitable output with a
short portion of the source is output, along with an output
of the kind

File "filename.c", line 17:
Error: Identifier "ths" not defined.
Go on with <Return>, abort with <A>:

Now you can pass over the error with <Return> and continue
the translation or press <A> to abort the compilation.

StormC is capable of being resident, even if some Shells
announce a sum error. This is harmless in each case, even if
StormC was made re-entrant on a somewhat unusual
method: Using a semaphore a loaded copy of the program
cares for that it does not run twice simultaneously.

Options
All compiler functions are steered through compiler options,
which are indicated in the command line and begin
respectively with a minus character "-".

To bring a little order in this extensive jumble, the options
can be divided using their respectively first letter into
different ranges:
134 StormC - the professional choice

Options
◆

- a Assembler Source Generation
- b Debugs
- d Symbol Definitions
- e Error Messages
- g Code Generation
- h Pre-Compiled Headers
- i Paths for Includes
- j Paths for Libraries
- l Linker Libraries
- p Parser
- s Copyrights
- wWarnings and Main Memory Size

Options are always global: At a line of the form

StormSYS/StormC -x text1.c -y text2.c -z

"text1.c" and "text2.c" will be compiled equally with the
options "x", "y" and "z". In other words: The sequence of
file names and options is not relevant.

The sequence of the options mutually is not alike, if
contradictory options appear in an instruction line. For
instance you turn on with "-gO" the optimisation and with
"-go" off. In cases like

StormSYS/StormC -go -gO etc.

the respectively last statement is valid.

Not only for the optimisation, but for almost each feature
there are two options: one to switch on and one to switch
off. At first glance that appears superfluously, because e.g.
the optimisation is not activated by default and so an option
for switching it off is not really necessary.

At the most switching possibilities the way was chosen, that
you switch on with an uppercase letter and off with a lower-
case letter like "-go" and "-gO".

The most important example is the option "-b" for the
creation of debugger files. The option switches are defined
through appendices of a Zero. "-b0" means therefore "No
debugger files".

In some cases abbreviations are introduced also, e.g. "-O" is
identically with "-gO". A two-letter-combination through
StormC User Manual 135

6 COMPILER
◆

an individual letter to abbreviate, is perhaps no particularly
impressive saving. In this particular case "-O" has the
advantage to be compatible to other compilers.

Assembler source
-a and -as Perhaps you would like to examine once the code created by

StormC, or you belong to the people, who want to optimise
the compiled program by hand. With the option "-a" you
can get the output of an assembler listing.

E.g.

StormSYS/StormC test.c -a

creates not only the object file "test.o" but also the
assembler listing "test.s". The statement "-a" does not
abort the translation process before the assembling, but
creates the source in addition to the remaining actions.

A pure assembler listing is rather tangled in most cases.
Therefore there is the alternative "-as", through the
statements from the original sources will be inserted at the
respectively corresponding positions as commentary in the
assembler source.

To switch off these both options explicit you must use "-
a0".

Pre-processor: Definition of symbols
-d With the option "-d" you can define "from outside" a pre-

processor symbol. Thereby an argument corresponds to

-d NAME

a line

#define NAME

at the beginning of the source. A typical application is an
instruction like

StormSYS/StormC text.c -d NDEBUG

if the include file "<assert.h>" is used.
136 StormC - the professional choice

Compiler mode
◆

You can assign a value to the symbol by setting "=" directly
behind the identifier, e.g.

-d ANZAHL=4711

As value a token is allowed here only, that means at

-d N=17+4

would ignore that "+4".

 Pre-processor: Include files
-iThe path where StormC searches the include files is by

default set to "StormC:Include".

Through one or several "-i"-options you can change this
path: With the option

-i StormC:inc

the drawer "StormC:inc" will be looked for exclusively, and
at

-i StormC:include -i StormC:include/amiga

the pre-processor searches successively in the both drawers.

Compiler mode
ANSI C or C++

-pc and -pp StormC can also be used as ANSI C compiler. If you do not
want to set "#pragma -" at the beginning of the source, you
can use the compiler option "-pc". C++ is the pre-set mode,
which is the same as the option "-pp". Therefore "c" like "C"
and "p" like "plus plus" - this is however completely easy
to keep in mind.

Exception handling
-px, -pX and -X Sometimes it is advantages, if you translate a "classic" C++

program, which does not use exception handling, in a
particular compiler mode. Then the key-words ("catch",
"throw" and "try") connected with the exception
treatment are recognised no more, and in the created code
there is no bookkeeping of the necessary destructor calls.
That will make C++ programs faster and smaller. ANSI C
programs will not be affected.
StormC User Manual 137

6 COMPILER
◆

As default the exception handling is switched off ("-px"). If
you would like to use the exception treatment you must turn
it on first with "-pX". As abbreviation "-X" is allowed too.

Creation of Template functions
-t and -T It is not always easy for the compiler to decide, which

Template functions it should create and which not. "-T"
corresponds to the strategy "All Templates Create", at "-
t" is pursued the other strategy to create what will be created
faultlessly.

Code creation
Data model

-gd, -gd4, -gd6 and -gD The option "-gd" switches to "NearData (a4)" and "-gD"
to "FarData" . Pre-set is "FarData". With the options "-
gd4" and "-gd6" you can distinguish additionally, whether
the data model should be created relatively to the address A4
or to A6. The last one is very interesting at the creation of
Shared Libraries.

Code model
-gc and -gC The option "-gc" switches to "NearCode" model and "-gC"

to "FarCode" (default).

Optimisations
-go, -gO and -O The additional optimisations are turned on with the option

"-go" and off with "-gO". Alternatively you can use for "-
gO" also "-O0". By default they are off. "-O" can be used as
abbreviation for "-gO". If the optimiser is turned on only,
the compiler optimises in the supreme optimisation level.

Instead of switching the optimiser on and off there is the
possibility to switch to certain optimisation levels.

-O0 With the option "-O0" the optimiser will be switched off.
This is the same as "-go".

-O1 This switches the optimiser to the first level where basic
blocks are optimised. A basic block is a sequence of
intermediate code instructions, which contain no jumps.
Successive blocks are summed up, which makes work easier
for later optimisation steps. Unused blocks are removed
completely. The step is repeated until nothing more is to be
improved on this level. Also after higher optimisation steps
138 StormC - the professional choice

Code creation
◆

it is tried to sum up basic blocks and to remove unused
blocks.

-O2 Useless instructions like e.g. assignments at variables, which
are never used again will be removed.

-O3Variable and interim results are packed into processor
registers.

-O4Assignments at variables will be eliminated if the variable is
never used again. If a complete instruction can be eliminated
that way the whole intermediate code will be optimised
again, until no superfluous assignment is found any more.

Example:

In this complete useless function

void f(int i)
{
int j = i+1;
int k = 2*j;
}

only the second instruction will be recognised as useless at
lower optimisation levels. From level 4 on the code is
perused subsequently once more and then the first
instruction will be eliminated too.

-O5 At the M680x0 code generation MOVE commands to
destination register, which are used subsequently only once
before they receive a new value, are pushed together if
possible. So

move.l 8(a0),d2
 add.l d2,_xyz

becomes thereby

add.l 8(a0),_xyz

-O6At the interpretation of expressions the interim results of all
kind will be laid to auxiliary variables at code generation and
packed to processor registers later. At lower level these
auxiliary variables will be recycled if possible to keep their
number low. The expression "a*b+c" would create the
following intermediate code instruction:
StormC User Manual 139

6 COMPILER
◆

h1 = a*b
h1 = h1+c

From level 6 on the auxiliary variables are never used again.
The generated intermediate code would look like:

h1 = a*b
h2 = h1+c

In later optimisation step there will be a check whether it
makes sense to pack "h1" and "h2" in the same registers.
That costs time and RAM because of the increasing number
of internal auxiliary variables, but it allows to make a good
distribution of the registers.

Code for special processor
-g00- -g60, -g80 and -
g81

Also there are always fewer Amiga-User which use a normal
68000 processor StormC normally generates code for this
processor. It is compatible to all further processors of this
family. Indeed Motorola implemented some new commands
to newer processors beginning with the 68020. They will
accelerate programs partially, i.e. at multiplication and at
array access. The following options switch to the code
generation for certain processors:

-g00 68000 (default)
-g10 68010
-g20 68020
-g30 68030
-g40 68040
-g60 68060

In the current version of StormC the options "-g20" and "-
g30" are identical. Indeed the options "-g40" and "-g60"
differ drastically from the others. Since some FPU functions
are not implemented, they must be emulated. At code
generation for 68040/060 processors particular libraries are
used to create no FPU commands like it is done in other
compiler systems.

The use of a Floating Point Unit (FPU) will speed up
programs that use many floating point operations ("float"
and "double"). With the following options StormC creates
code for FPUs:

-g80 without FPU (Default)
-g81 68881
140 StormC - the professional choice

Debugger
◆

-g82 68882 (identically with -g81)

Code for linker libraries
-gl, -gL and -L If desired, StormC can put each function and each global

variable in separate hunks. As the linker does not takes non-
referenced hunks into the executable program file, this
mode suits particularly for linkable libraries. With "-gL" or
"-L" this option is turned on. "-gl" switches to normal
mode.

Debugger
RunShell

-b, and -b0 "-b" creates the necessary debugger files (".debug" and
".link"). "-b0" switches to original mode.

Symbolic debugger
-bs and -bs0The option "-bs" creates symbol tables hunks for symbolic

debuggers.

Copyrights
-sThe option "-s" outputs the following text at the call of the

compiler:

Programname versionnumber (creationdate),
copyright, author

Example:

StormC 1.1 (07th05.96), Copyright (c) 1996 HAAGE &
PARTNER computers Ltd.

Warnings and errors
Format of the error output

-e, -el and -eiStormC can output error messages in three different kinds:
interactive, in short or long format. The pre-set is
"interactive" error output, for which also the option "-ei"
can be used. Thereby for each error message a short source
section (approx. 5 lines), the source position and a prompt
("Go on with <return>, abort with <A>:") is shown.
The exact error position is emphasised in the source section
colourfully. After pressing <Return> or alternatively <Space>
or <C> the translation is continued. At input of <A> or
alternatively <ESC> or <Ctrl>+<C> the translation is aborted.
StormC User Manual 141

6 COMPILER
◆

The compiler option "-e" switches on short output. Here
only two lines, the source position and a short message are
outputted at each error and each warning. After ten errors
the translation process is aborted anyway. You can choose
another value for that number if you append it just after the
option i.e. "-e20".

The long format is a mixture from interactive mode and the
short one. Thereby sources and error message are outputted
like at "-ei" but it does not wait for an input. After a
maximum of ten errors the compiler aborts the action. For
this form of the error output you choose the option "-el".
As on the option "-e" you can choose the abortion level by
adding a number. E.g. "-el5" would be a meaningful
setting, since ten messages would not fit into a normal Shell
window.

Colours and styles
-eb, -eB and -ec The however somewhat boring text output can be made

more clearly. There is the possibility to show the real error
messages in bold with the switch "-eB". "-eb" switches back
to basic attitude. The option "-ecN" brings colour in the
game, at least if you use a numeral for "N". The screen colour
number "N" is used to differ between the source section of
other outputs. "-ec1" corresponds to the standard text
colour and "-ec0" is (theoretically) the background colour.
Since you could not read the text any more in the more last
case, so "-ec0" outputs the source in colour 2, but the error
position in an other colour than "-ec2".

Error file
-ef For the linking of StormC in foreign environments it can be

useful, to reroute all error messages in a file. That is done by
a statement like "-ef <name>". Thereby all error messages
and source positions are written in the indicated file. The
difference to a simple output routine is that "-ef" works in
addition to the normal screen output and secondly it does
not appear as a status messages in the file.
142 StormC - the professional choice

Warnings and errors
◆

Optional warnings
-w You turn on a optional warning by pacing their character as

BIG ones behind that "-w", while a small letter switches it
off.

These are the warnings and their characters:

A (Assignment): The operator "=" appears in a condition -
perhaps a the will-known "=="-novice-error? You can
inhibit such a warning by an additional brackets, i.e. "if
((a=b))" instead of "if (a=b)".

C (Conversion): Uncertain type conversion without cast,
i.e. double -> int.

E (Empty statement): Instruction has no code, i.e. "36;"

F (Function prototypes): Function called without a
prototype (only meaningful in C as in C++ it is an error).

N (Nested comments): A "/*" emerges in a comment.

O (Old-Style): Complaining about parameter lists in the old
"K&R"-style (only meaningful in C as in C++ this is an
error).

P (Pragma): Unknown "#pragma".

R (Return): Function with return value has none "return"-
statement.

T (Temporary): Temporary object was introduced, to
initialise a non-const-reference, which is an error in C++
since standard 2.0.

V (variable): Local variable is used never, or used, but never
initialised.

M (Macro): An argument for a pre-processor macros extends
over more than 8 lines or 200 tokens. It is obvious that
there is a closing bracket missing.

By default "-wEPRT" is activated. I.e. to switch warnings at
missing prototypes on and off such at unknown "#pragma",
you can simply use the option "-wFp" or alternatively both
options "-wF -wp".
StormC User Manual 143

6 COMPILER
◆

Please note, that
"-w+v" does NOT
mean that the

warning "v" is turned on in
addition to the current, but
that completely all
warnings are switched on
and subsequently "v" off
again.

To turn on all warnings - by the way a sign for good
programming style - is some typing work. To make it a little
easier there is an abbreviation: a "+" directly behind that "-
w" turns on all warnings.

You can also switch off all warnings with "-w-", but I would
not advice this to you. A "clean" program should output any
warnings, at most "a"-warning are possibly as printout of
your personal programming style. If you take warnings
actually so seriously, the following section will be very
interesting for you.

Treat warnings like errors
-ew and -eW With the option "-ew" warnings are treated like error

messages. "-eW" switches back to normal mode.

Core memories
-w Of course StormC allocates the memory for the most internal

processes automatically and dynamically, but at code
generation there must be a coherent memory area. This size
is 80 KByte by default. If there is the message "Workspace
overflow!" you should increase the amount with the option
"-w" cautiously, i.e. "-w150" for 150 Kbytes.

Pre-compiled header files
-H, -h and -h0 StormC can pre-compile parts of a program. That means that

the compiler can store all its internal data like declarations
and definitions, at a user selectable position. At the next run
of the compiler this file can be loaded very quickly and so it
saves much time.

This feature is for speeding up program development,
especially when many header files are used i.e. the AmigaOS-
Includes. To tell the compiler where the headers ends and
your program begins, you must mark this position with the
command "#pragma header".

It is best to write the "#include"‘s of the header files you did
not do by your own or which you will not change any more
at the first place in the source of all units. Then the line
"#pragma header" follows. Next parts are the include
instructions for your own header files and the rest of your
program.
144 StormC - the professional choice

Summary
◆

Without special option or with the explicit switch "-h0",
"#pragma header" has no effect. If you indicate an option
"-H <name>", the compiler stops shortly as soon as it reaches
the pragma and writes all definitions and declarations into
the file "<name>". To accelerate the program compilation
now you must choose the option "-h <name>". Then the
compiler reads the pre-compiled headers from the indicated
file, searches the source for "#pragma header" and
continues this work form there.

Since everything which stands before "#pragma header" is
completely ignored, it has to stand consequently in the main
source file and not in an include file.

Please keep in mind that the compiler does not check,
whether the content of the pre-compiled header files still
corresponds with the original source. Therefore I
recommend to compile such header files only which will not
be changed any more.

Summary
Now a short, alphabetically organised summary of all
options follows:

-a Creates an assembler source for each translated
text file.

-as C source is inserted as commentary into
assembler source.

-a0 No assembler output (default)
-b Create small debug information file.
-bf Create large debug information file.
-b0 Without debug information file (default).
-bs Create "symbol hunk" for symbolic debugger.
-bs0 No symbol hunk (default)
-c Compile sources and creates the corresponding

".o" files.
-d NAME Defines a pre-processor symbol. Optionally a

"=" and the desired value (only a token) can be
set directly behind the name. Otherwise the
symbol is defined as "empty".

-eB Error messages written in bold.
-eb Error messages written normally (default)
-ecN Output source in colour number "N" at error

messages.
-ef xxx Write error messages to file "xxx".
StormC User Manual 145

6 COMPILER
◆

-ei Ask the user whether he wants to abort at each
error message during compilation (default).

-e[N] Output error messages without user inter–
action. After "N" errors compilation is aborted
(default is 10).

-el[N] Like "-e", but with source output in addition.
-ew Treat warnings like errors.
-eW Output warnings, but ignore them (default).
-gd Data model "Near Data (a4)".
-gd4 Same as "-gd".
-gd6 Data model "Near Data (a6)".
-gD Data model "Far Data" (default).
-gc Code model "Near Code".
-gC Code model "Far Code" (default).
-gl All functions in one section (default).
-gL Library mode: Create an own section for every

functions and global variables.
-go No optimisation (default).
-gO With optimisations.
-g00 Generate code for 68000 (default).
-g20 Generate code for 68020.
-g30 Generate code for 68030.
-g40 Generate code for 68040.
-g60 Generate code for 68060.
-g80 Do not generate code for FPU use (default).
-g81 Generate code for 68881-FPU.
-g82 Generate code for 68882-FPU.
-H xxx Store pre-compiled header files.
-h xxx Load pre-compiled header files.
-h0 Do not use pre-compiled headers (default).
-i xxx Set path(s) StormC should use to look for

includes. It is possible to use multiple "-i" for
adding more paths. The default is "StormC:
include".

-L Abbreviation for "-gL"
-o xxx Sets an other name for the object file.
-O Abbreviation for "-gO"
-O0 Alternative for "-go"
-O1 Turns on the optimiser level 1.
-O2 Turns on the optimiser level 2.
-O3 Turns on the optimiser level 3.
-O4 Turns on the optimiser level 4.
-O5 Turns on the optimiser level 5.
-O6 Turns on the optimiser level 6.
-pc Switches to ANSI C mode.
-pp Switches to C++ mode (default).
-px No exception handling.
146 StormC - the professional choice

Summary
◆

-pX With exception handling.
-s Outputs the copyright message and the version

number of StormC.
-t Create faultless template functions only.
-T Create all required template functions.
-w xxx Output warnings. An arbitrary sequence of

characters can follow. Big ones will turn on
warnings, small ones will turn them off.

There are the following warnings:

A (Assignment): Operators "=" appears in
condition. Perhaps the will-known "=="-novice
error?

C (Conversion): Uncertain type conversion
without cast, i.e. double -> int.

E (Empty statement): Instruction has no code, i.e.
"44;"

F (Function prototypes): Function called without
a prototype (only acceptable in C, because in
C++ it is an error)

N (Nested comments): "/*" in commentary.
M (Macro): An argument for a pre-processor

macros extends over more than 8 lines or 200
tokens. It is obvious that there is a missing
closing bracket.

O (Old-Style): parameter lists in the old "K&R"
style (only acceptable in C, because in C++ it is
an error).

P (Pragma): Unknown "#pragma".
R (Return): Function with return value has no

"return".
T (Temporary): Temporary object was introduced

to initialise a non-"const" reference (this is an
error since that 2.0 standard).

V (variable): Local variable is never used and/or
used, but never initialised.

By default "-wEPRT" is activated.

-wN Sets the interim compiler workspace on "N"
Kbytes. Default is 80 Kbytes, which should be
enough for most cases.

-w+ Output all warnings.
-w Output no warnings.
-X Abbreviation for "-pX".
StormC User Manual 147

6 COMPILER
◆

148 StormC - the professional choice

Debugger
7 ◆
7 The Debugger

fter the first successful compilation of a program the test phase starts. Of
course you could simply run the program from a CLI (or a Shell), yet this
can cause some typical Amiga problems:

1. If the program makes serious errors, which is always possible in C or C++, the
computer may crash, because the CPU has so called exceptions, i.e. special soft- or
hardware states. These are treated only very generally by the OS, and often don’t
allow you to work on in a reasonable manner without rebooting the system.

2. Rebooting the Amiga is the only solution in most cases when the program is running
into and endless-loop.

3. After an exception or when the program is stopped by “exit()“ or “abort()“ most
of the system resource are still reserved. While still reserved memory is only
annoying, open files or windows may hinder the further work very much or even lead
to crash of the OS.

4. The problems mentioned here cannot be traced back to their origin in the source
code.

GENERAL INFORMATION ON RUNSHELL 151

The StormC Maxim ... 151

A Resource-Tracking Example .. 152

Freeze the program temporarily .. 153

Halting the program .. 154

Changing the task priority .. 154

Sending signals .. 154

USING THE DEBUGGER ... 157

The Variable Window .. 159

Temporary Casts .. 161

Changing Values .. 161

Sorting of Variables ... 161

A

StormC User Manual 149

7 THE DEBUGGER
◆

THE PROFILER ...164

Profiler technical information ...167

REFERENCE ..169

Control Window ...169
Status line ...169
“Program Stops At Breakpoint“: ...169
“Continue Program“: ..169
“Program waits for ...“: ..169
Debugger icons ...169
Go to next breakpoint ...170
Step in (single step) ...170
Step over (single step, but execute function calls without stopping)171
Go to the end of the function. ...171
Show Current Program Position ...171
Pause ..172
Kill ..172
Priority gadgets ..172
Signal group ...172
Protocol gadgets ...172
Window close gadget ...173

Current variable window ..174

The module window ...177

The function window ...178

The history window ..178

The breakpoint window ...179

The address requester ...180

The hex editor ...181
Choosing the display ..181
The address string gadget ..181
The address column ..181
The hexadecimal column ..181
The ASCII column ..181
Keyboard control ..182
The scrollbar in the hex editor ..182
150 StormC - the professional choice

The StormC Maxim
◆

GENERAL INFORMATION
ON RUNSHELL
It is for the four reasons of the introduction to this chapter
StormC has a "RunShell". It will launch the program similar
to a start from the CLI, yet it caters for a whole range of ways
to control and direct the program.

A special feature is "Resource-Tracking", which solves
problem 3, for example. After the program is interrupted or
finished, all resources that have been allocated but not freed
will be shown. The resources are then freed by the RunShell.
Next the position in the source code where the resource was
allocated can easily be jumped to.

Connected to this RunShell is the Source Level Debugger. It
allows you to execute programs step by step, localise errors,
or inspect variables. But also directly control the program,
and always find the origin of problems (in the worst case a
crash) in the source code.

Additionally it is possible to halt the program (for example
in endless loops), without having to compile the program in
a special way.

The StormC Maxim
The program is in the test phase is equal to the final product.
To be able to use the source level debugger you need to
compile with the corresponding option, yet this doesn’t
influence the generated program. This prevents the problem
other systems from time to time have: bugs that show up
when running a program under normal conditions can’t be
reproduced using the debugger.

A further special feature is the ability to switch from normal
execution to the debugger, and to return from the debugger
to normal execution (if the program was compiled using the
"debug" option).
StormC User Manual 151

7 THE DEBUGGER
◆

A Resource-Tracking Example
Open the project "IllResource.¶" in the "StormC:
Examples/IllResource" drawer. This program allocates
some resources without freeing them.

Start the program using for example the function key F9.
Subsequently the program will then be compiled if necessary
and then run.

Other ways of launching your program are: selecting the
button in the toolbar with the walking man on it, selecting
the menu item "Start" from the "Compile" menu, double
clicking the entry for the program in the project window, or
directly after compiling by hitting the "Start" button in the
error report window.
152 StormC - the professional choice

Freeze the program temporarily
◆

After compiling the Runshell control window will be
opened. This is your "control board" for the program.

The status-line shows help texts for elements of the control
window and also the status of your program, when you’re
not above any control gadgets.

The "IllResource" program now shows that it’s waiting
(the "Wait()" function of "exec.library"), and also shows
the mask of the signal flags that it is waiting for. At the
moment this reads "0x00001000", which corresponds to a
Ctrl-C.

De icons in the "Debugger" group aren’t needed for the
moment, first we want the program to execute normally.
The debugger can be activated with the checkmark on the
group frame, the icons in this group stand for "Go", "Step
in" (single step), "Step over" (single step, but execute
function calls without stopping), "Go to end of function"
and "Show last found program position". These
functions will be explained later in the debugger
introduction.

Freeze the program temporarily
The "Pause" button allows you to freeze the program at any
time, e.g. when you wish to inspect the contents of a
window, that would have been overwritten quickly
otherwise. This button toggles, first the button is
"lowered", and stays that way. The program will be frozen
until you "raise" the button again by selecting it once more.
StormC User Manual 153

7 THE DEBUGGER
◆

The program will continue to execute. The menu item
"Pause" in the "Debugger" menu also freezes the program.

Halting the program
Next to it is the "Kill" button. This martial action allows you
to end program execution at any time. The menu item "Kill"
in the "Debugger" menu has the same result.

Especially by
setting too high a
priority for your

program you can block the
system. Please be careful
when changing this setting.

Changing the task priority
The "Priority" group shows the priority of the program and
allows you to change it. Even though the priority can be
changed throughout the whole range of -128 to 127, it
should be restricted to the range of -20 to 20, otherwise
troubles with other programs or even an unusable system
can result.

The value set at program start (normally "1") is really a
sensible one, because it is one step minor than the priority
of the debugger, so working with the debugger is always
fluently.

Sending signals
The "Signals" group contains four buttons, to send the four
interruption signals of AmigaDOS:

Ctrl-C, Ctrl-D, Ctrl-E, Ctrl-F.

You can very easily control a program while testing by using
corresponding "Wait()" statements. Much like the program
"IllResource" that currently waits for a Ctrl-C before it
allocates the resources.

Now select the "Ctrl-C" button in the "Signals" group.
154 StormC - the professional choice

Sending signals
◆

The program has now allocated some resources, but it didn’t
free them again, The program has finished.

Even though
Resource-
Tracking always

works and the Runshell
always frees the resources,
the source code position can
only be shown if the
program was compiled with
debugging information.

The protocol list shows information about resources that
were allocated and not freed. This involves memory
allocations, libraries, and a file.

Double-click a line in the protocol list, and the position in
the source code where the resource was allocated will be
shown. If the source code wasn’t available in an editor to
begin with, a new window will be opened and the source
code will be read.
StormC User Manual 155

7 THE DEBUGGER
◆

In a real program you could now start on writing the
appropriate code to free the resources. Where this should be
done of course depends on your program.

To be able to show the position in the source code where
resources are allocated incorrectly, one condition must be
fulfilled:

The corresponding OS function must be called directly in
the source code. This rules out calls from link-libraries,
i.e. OS functions should not be called via "amiga.lib"
and the stub-functions contained therein, but instead
always use the correct "#pragma amicall" and
"#pragma tagcall" calls.

Now free the resources using the menu item "Free
Resources" from the "Debugger" menu, or directly close
the control window, which will automatically close the
resources.
156 StormC - the professional choice

Sending signals
◆

USING THE DEBUGGER

Load the project "StormC:Examples/Debugger Tutorial/
DebuggerTutorial.¶". The program consists of many
modules with one header file, just enough to also show some
non trivial debugging situations.

Start the program normally and get familiar with it. First a
menu with three items will appear:

• enter an address,
• show all stored addresses and
• end of program.

If you wish to enter a new address, enter 1 (don’t forget
<Return>). Then enter a person’s last name, first name, street
and place of residence. Repeat this two or three times and
have a look at the result by choosing menu item 2. Then end
the program.

Because normally you only debug your own programs, you
should now have a look at the source to get familiar with the
function names.

The main program is in "main.c". It shows the main menu
and evaluates the menu input. Depending on the input
functions from "address.c" will be called.
StormC User Manual 157

7 THE DEBUGGER
◆

First up in the "address.c" module are some static
functions for use by the other functions. Then all the address
handling functions follow.

The header file "address.h" contains the "struct
Address" data structure and the prototypes of all functions
that do something with addresses, particularly input and
output. These functions are implemented in the
"address.c" module and are called by the "main.c"
module.

When so far everything is clear, start the program again, only
now in the debugger, i.e. with F10 or the corresponding icon
in the toolbar.

Other ways to debug a program are: the menu item "Debug"
in the "Compile" menu, double clicking the program name
in the project window while simultaneously holding the
<Alt> key, or directly after compiling in the error window by
selecting the "Debug" button.

Again the control window is opened first, only now with
activated debugger controls. The program will automatically
execute to the first position in the program for which source
code is available. If you haven’t already loaded the "main.c"
source, it will happen now. The editor window now looks a
bit different: a column of breakpoint buttons is located to
the left of the text.

A breakpoint
button is there for
every position in

the source where the
program can be stopped,
breakpoints are the
positions in the program
where execution will stop,
when it was started with
"Go" (and runs at full CPU
speed).

In this column you can set or clear a breakpoint with the
mouse. This column also shows how far a single step takes
you, since often a step in C takes you more than one line
158 StormC - the professional choice

The Variable Window
◆

ahead (for example skipping comments, declarations, long
expressions etc.).

The current program position is always in the editor shown
using a white bar that marks the whole line horizontally.

The Variable Window
Subsequently the window with the variables is opened.. This
always shows all variables that are available to the program
at this time.

At the first line of the window a short help text is shown,
which tells you the meaning of the different buttons of this
window.

Below this line is the button line. On the left side there are
4 buttons to select one of the 4 variable pages.
StormC User Manual 159

7 THE DEBUGGER
◆

The 1st page shows all parameters and local variables of the
current function and the global variables of the module that
contains this function.

The 2nd page contains all global variable of all modules.

The 3rd page shows the variables that should be supervised.
This can be local variables of functions or even parts of a
structure (members).

The 4th page contains the cpu register values.

Choose the first variable ("address") out of the list of the
current variables, by selecting its name. Next you can also
reach other elements of the window.

Next to the buttons for paging you will find these for actions
on the selected variables.

By selecting the 1st button the source code position where
the variable is defined 3will be shown by positioning the
cursor there.

The 2nd button is interesting for C++ programmers. It shows
a list of all member functions of the type of this variable. This
list will be empty, because in this example there are no
member functions.

The 3rd button inspects a variable. The variable will be
looked for very exactly e.g. every field of a structure is shown
individually.

The 4th button returns from the inspection and the value of
the variable list will be the same as before the inspection.

The 5th button opens the hex-editor and puts the cursor at
the address of the variable.

The 6th button adds the variable to the watched variables
window. This allows you to build a list of variables that you
always want to see, even if the program is not executing the
corresponding module or function.

The 7th button is only available on the page of the watched
variables. It deletes a variable out off the list of watched
variables.
160 StormC - the professional choice

Temporary Casts
◆

Temporary Casts
The string gadget "Cast" allows for easy casting of the type
of a variable. You may enter a type here that is defined
somewhere in the module. Pay attention to write the type
like it is shown in the variable list. If the type is found the
value of the variable will be interpreted according to the new
type. E.g. it might be sensible to make an "ULONG" a "LONG"
to get the signed value. The most often used application is
to change the target type of a pointer, e.g. to make "Message
*" an "IntuiMessage *". At next inspection of the variable
the new type will be used.

The old type will always we shown in the variable list. The
new one is only in the string gadget "Cast". When you want
to return to the old type you must only delete the contents
of the string gadget and press <Enter>.

If you entered a wrong type the screen will flash and the
former contents will be restored.

Changing Values
When you have selected a number variable (here for
example the third variable "illegal"), you can directly
modify the value of the variable in the "Value" string
gadget, without having to bother with the hex editor.

When you selected a variable which type is a pointer to
UBYTE or BYTE (also called a "string") you can change the text
at string gadget "value". Pay attention not to enter more
characters than is reserved for that string.

Sorting of Variables
First the list of variables is unsorted. Now you can select the
sorting method with the cycle gadget "Sort". The
alphabetical sorting will use the names of the variables for
sorting, so you can find a certain one quicker in a big list.
"Last Changed" will put the variable on the top that was
changed last. This sorting will be updated after every
program step. The debugger recognises every change, even
changes of single struct fields or variables, which are
changed through pointers.

The sorting method can be selected separately for every of
the 3 variable pages.
StormC User Manual 161

7 THE DEBUGGER
◆

Now execute some statements of the program by selecting
the middle icon in the "Debugger" group. In the editor
window you’ll see how the program executes one "printf"
function after the other, with the output appearing at the
same time in the console window. The status line in the
control window shows "Breakpoint reached" after each
step. When you take a step that takes longer, for example
when reading input from the console, you can also read the
"Program continues" message.

At some point you’ll reach the "gets(s)" statement on line
25. When you step through this function you will of course
have to type the corresponding input in the console
window.

Please enter <1> and then <Return>. In the switch-statement
you’ll now enter the first branch. On line 29 you’ll find the
function call for the function "readAddressmask()". This
function resides in the "address.c" module. Don’t select
the step over button, but instead choose the second button
from the left, to execute the program in single steps. This
way you’ll enter the function "readAddressmask()".

The source for the "address.c" module will now be loaded
and the source code position will be shown. Now go step by
step through the function. Depending on whether you use
the second or third of the debugger icons in the control
window, other function calls will either be stepped through
or executed without stopping.

When needed, enter name, first name, street and place of
residence in the console window.

Before ending the function, you can try the 4th button from
the left in the "debugger" group. This one will execute the
program without stopping until the end of the function is
reached and you will return to the main program again.

Now you should be on line 30, and the variable "address"
should have a sensible value. You can check this now: select
the variable in the current variables window, and select the
button "I" to examine it.

The elements of the "struct Address" will replace the
variable list.
162 StormC - the professional choice

Sorting of Variables
◆

You can change the entered strings even now. Select e.g. the
field "name" and change the contents in the string gadget of
"value". In this case you should only enter a string not
longer than the old one, because the program has only
reserved this space in the dynamic memory by "malloc()".

Continue bug hunting and try a couple more things, for
example watching variables and structure fields. When you
feel comfortable with the debugger, end the program, either
correctly or with "Kill".
StormC User Manual 163

7 THE DEBUGGER
◆

THE PROFILER

A profiler is an indispensable tool when optimizing a
program. Compiler optimizations can only improve
program performance by so much, whereas a profiler can
provide the necessary information for identifying the most
time-intensive functions in a program. These functions can
then be rewritten to use better algorithms if possible, or at
least sped up by carefully optimizing the source code by
hand.

The StormC profiler is especially powerful; it allows precise
timing and provides many valuable statistics about the
program.

As always, we have stuck with the our maxim in that no
special version of the program needs to be generated for
using the profiler. Having the normal debug information
generated will suffice. This - like the ability to start the
profiler while debugging - is probably unique for compilers
on the Amiga.

If you wish to use the profiler, make sure your project is
compiled with the Debug option set to either “small
debug files“ or “fat debug files“. Select the “Use
profiler“ option in the Start Program window. The
program can then be started as normal. Simultaneous
debugging is possible, but may lead to minor deviations in
the profiler’s timing measurements.

After starting the program, the profiler window can be
opened.

The upper-left corner updates the profiler display, changing
all indicated percentage and timing values to reflect the
latest results.
164 StormC - the professional choice

Sorting of Variables
◆

The help line shows the cumulated CPU time. This value is
the amount of real CPU time used, ie. it does not include
time that the program spends waiting (for signals, messages,
or I/O) or time used by other programs that are running in
the background.

The list below shows the functions including the following
information:

1. Function name.Member functions of a class are displayed using the “scope
operator“ syntax (class name and member name separated
by two colons).

2. Relative running time.This counts only the time that the program spends in the
function itself, or in OS functions called directly from it. Any
time this function spends calling other functions in the
program is omitted.

This value provides the best hint as to which function uses
up the most time. The sum of all values in this column will
be 99 - 100% (the missing percent is lost in startup code and
minute inaccuracies).

3. Relative recursive running
time.

Here all subroutine calls from a function are included in its
running time. For this reason the main() function will
normally show a value of 99%.

4. Absolute running time.
5. Longest running time.
6. Shortest running time.

These three lines give you a quick overview over the
invocations of each function. Just how a function can be
made faster often depends on whether the invocations
generally take roughly the same amount of time to finish
(small difference between longest and shortest running
time), or some invocations take noticeably longer to
complete than the others (great difference). In the latter case
it may be profitable to optimize those special cases.

7. Number of invocations.Sometimes a function makes up a large chunk of the
program’s running time only because it is called very often,
but each individual invocation takes up very little time.
Optimizing such a function is usually a tough nut to crack.
However it may be very beneficial in such a case to declare
the function inline (“__inline“ in C, “inline“ in C++).
StormC User Manual 165

7 THE DEBUGGER
◆

Above this list are several controls related to the profiler
display:

The uppermost line is the help line which shows brief
descriptions of the controls.

Directly below that, to the left, you see three buttons. The
first of these updates the list of functions.

The second button lets you save the profiler display as an
ASCII text file. A requester will appear to let you select a file
name.

The third button dumps the information to the printer
(using the “PRT:“ device).

On the right-hand side of this line are the sorting controls
for the function list. The first entry “Relative“ sorts the list
by the values in the second column, “Recursive“ sorts by
the third column, and “Alphabetic“ sorts
alphanumerically by the function name shown in the first
column. And finally “Calls“ sorts the list by the contents of
the last column.

The line below this holds a text entry field for a DOS pattern
string. Only those functions are shown whose names match
the pattern; this can help reduce excessively long function
lists to a manageable size. This can be used for instance to
only show member functions of a particular class by entering
the class name followed by “#?“.

To the right of this sits a numeric entry field where you may
enter the minimum percentage of running time that a
function must take up in order to be shown in the list.
Functions that make up less than 5 or 10% are often difficult
to optimize and even doubling the speed of such a function
is hardly worthwhile as the program would not become
noticeably faster (a mere 2.5 or 5% in this case).

These optional restrictions aside, only those functions are
ever shown that are invoked at least once while the program
is running.

Double-clicking on a function entry will take you directly to
its location in the source text.
166 StormC - the professional choice

Profiler technical information
◆

The profiler display is also opened and updated
automatically when the program terminates. The control
window will also remain open. Closing the control window
will also cause the profiler display to close and the list is
forgotten. Should you want to have access to this
information afterwards, make sure you have saved it to file
or printed a hardcopy before closing the window.

Profiler technical information
The LINE-$A instructions $A123 and $A124 are used to mark
function calls.

These machine language instructions are unused on all
members of the Motorola 68K processor family and trigger
an exception. This exception is used to update the timing
and call statistics.

The use of exceptions has the relative drawback of reducing
the effective CPU speed, ie. the program will take longer to
execute when the profiler is running than it does when the
profiler is not activated. The difference will be particularly
noticeable if the program invokes a lot of short functions.
However the profiler will still be faster and more accurate
than most existing profilers for the Amiga OS. The technique
also buys the advantage of not having to recompile your
code especially for profiling.

Handling of recursion is limited: The longest and shortest
execution times will usually be unreliable, the total
execution time (and therefore the relative values also) may
be incorrect. A simple case of recursion (where f() calls f())
shows the correct relative values, but in the case of nested
recursion (where eg. f() calls g() which calls f()) cumulates
all times onto one of the two functions.

Function calls leading out of the recursion will still be shown
correctly.

The effect on long jumps is not predictable, but in most cases
this should only lead to minor distortions of the statistics for
the called function.

Theoretically speaking, not all functions can be measured:
Only functions whose machine code starts with a link or
movem instruction are available to the profiler. One of these
instructions will however be necessary in almost all cases,
StormC User Manual 167

7 THE DEBUGGER
◆

even at the highest optimization levels. And fortunately any
functions that do not need these instructions will be so small
(no variables on the stack, only the registers d0, d1, a0, and
a1 are altered) that optimizing them any further would be
near-impossible anyway.

Inline functions generally cannot be measured.
168 StormC - the professional choice

Control Window
◆

REFERENCE

Control Window
The control window is used to direct the program and for
resource-tracking. It is opened automatically at the start of a
program.

Status line
Show short help texts about control window gadgets in text
colour (black), and program status messages as important
text (white).

“Program Stops At Breakpoint“:
The program reached a breakpoint and stops. This can
also be a breakpoint set by the debugger to make it
possible to interrupt between C and C++ statements that
often exists of more than one machine code command.

“Continue Program“:
The program is running.

“Program waits for ...“:
The program waits at an exec function "wait()" for
signals. The signal mask is shown.

Debugger icons
The group with debugger icons contains a checkmark in the
border to switch the debugger on and off. When the
debugger is on the buttons that control execution are
available.
StormC User Manual 169

7 THE DEBUGGER
◆

When the program is started just „normal“ the debugger can
be switched on at every time. Then the debug information is
loaded. The program must be stopped by a suitable
breakpoint. A module must be selected out of f the module
window to set the breakpoint in the corresponding source
code or a function is selected to set the breakpoint there.

Go to next breakpoint
If you didn’t put a breakpoint in your program, the program
will be executed normally.

The program will execute at maximum CPU speed, until the
next breakpoint is found (this needs to be set by the user in
the editor). Because the debugger and the editor run in full
multitasking together with the program that is being
debugged, breakpoints can be set at any time.

The menu item "Go" in the debugger menu has the same
effect.

Step in (single step)
This step will always go to the next breakpoint button visible
in the source code. When present, function calls will be
entered and breakpoint buttons will be used here similarly as
well.

Functions without available source code will also be
executed in single step mode, to allow stopping in function
calls to code that has source code available again. Such
jumps back can also happen in link libraries using function
pointers or virtual function members in C++ classes. The
execution speed of library functions is therefore low.

Functions of shared libraries will always be executed at full
CPU speed. At recall of the program from such a library it can
not be stopped. If the behaviour of a hook function should
be tested a breakpoint must be set in the hook function
before the call of the library function that calls the hook
function.

Under certain circumstances it is critical to single step
"Forbid()"/"Permit()" sections. The protection is broken
after every stop (the program sends a message to the
debugger and waits for an answer) and other tasks can run
again. When at this time one of the global system lists is not
correct the system might crash. When the "Forbid()"/
170 StormC - the professional choice

Control Window
◆

"Permit()" section is only used to copy the contents of a
global data structure (e.g. the list of all waiting tasks of the
system) it is probable that the result is incorrect.

Inline functions are normally treated like instructions, cause
the compiler will insert inline functions directly into the
program and optimise it very strong. So a allocation between
instructions of the program and the source code of the inline
function is impossible. For testing of a program teh compiler
option “Don´t inline“ can be set and the compiler will
treat every inline function like a normal one. So inline
functions can be single stepped.

The menu item "Step in" in the "Debugger" menu has the
same effect.

Step over (single step, but execute function calls
without stopping)
This step will always go to the next breakpoint button visible
in the source code, but function calls are executed at full
CPU speed. If there is a breakpoint the program will
naturally be halted.

The menu item "Step over" in the "Debugger" menu has
the same effect.

Go to the end of the function.
The program will be single stepped until the current
function returns to its caller. Function calls are executed at
full speed.

The menu item "Go to end of function" in the
"Debugger" menu has the same effect.

Show Current Program Position
This is the position after the last step or after reaching a
breakpoint. When the source code position in th eeditor is
lost, e.g. by viewing the source code position of a variable
definition, it can be displayed by this button.

Normally the debugger displays all source sin the same
editor window. At every change of it the old on will be
removed out of memory and the new one is loaded. so the
number of open windows can be minimised.
StormC User Manual 171

7 THE DEBUGGER
◆

In cases a source is used very often it is sensible to keep it
open permanently. So it must be opened by a double click
on its entry in the project and not on the one in the module
window. When the text is need the next time the
breakpoints are automatically added. This way two or more
source windows can be used.

The item “Show PC“ of the “Debugger“ menu has the same
effect.

Pause
Stops the program while the button is lowered. The program
will be removed from the list of running or waiting tasks.
Processing of signals received while the program was paused
is not guaranteed.

The menu item "Pause" in the "Debugger" menu has the
same effect.

Kill
The program will be halted abruptly. No care is taken that
the program isn’t executing within a "Forbid()" -
"Permit()", or hasn’t got a screen "locked". "Kill" is
therefore not safe under all circumstances.

The menu item "Kill" in the "Debugger" menu has the same
effect.

Priority gadgets
The program priority can be altered from "-128" to "127", it
is however recommended to leave the priority in the "-20" to
"20" range, to avoid conflicts with certain OS tasks.

Normally the priority is set to "-1" so it is one time lower than
the priority of the debugger and it will run perfectly.

Signal group
The signals <Ctrl>-<C>, <Ctrl>-<D>, <Ctrl>-<E> and <Ctrl>-
<F> can be send at any moment. They are useful for simple
program control while testing.

Protocol gadgets
The list itself shows all resources, for which no
corresponding "free" statement was executed. By double
clicking a line you can show the source code position of the
172 StormC - the professional choice

Control Window
◆

allocation, if this particular OS function is called directly in
the program, i.e. if the functions are defined by "#pragma
amicall" or "#pragma tagcall".

The screen is flashing when there is no corresponding source
position for the resource. Typical resources without a
corresponding source position are memory blocks and
shared libraries. These resources are reserved by "storm.lib".

To avoid unneeded protocol output only theses resource are
displayed which reservation was made from the program. So
resources which are directly reserved by a shared library are
not displayed. Maybe one can imagine how many memory
orders an "OpenWindowTags()" will cause...

Resources are freed very carefully. Commonly resources are
pointers to a data structure and can a release by another OS
function can not always be recorded. So there is a test at first,
e.g. whether there is a screen with the given data structure
"Screen" at the time it should be freed, before the screen will
be closed by "CloseScreen()".

In most cases all resources can be freed.

The menu item "Free resources" in the "Debugger" menu
frees all resources.

Window close gadget
The window will automatically be closed, when the program
is ended and all resources are freed.

Closing the window automatically frees the resources.
StormC User Manual 173

7 THE DEBUGGER
◆

Current variable window
The variable window shows all variables and inspected
variables. It can be opened at any time by the item
"Variables…" in the "Windows" menu.

Every variable is displayed with its name, type, memory class
and value, e.g.

counter <LONG, stack> 42

The type is always displayed in the Amiga typical manner:
"LONG" instead of "long int" and "UBYTE" instead of
"unsigned char".

The memory class rough marks the place where the variable
is stored. The good optimisation of the compiler will often
put variables to the same register or to temporary unable
registers. So you should not wonde3r when a variable with
the memory class "D0" will always change its value. This
register is used very often.

List of memory classes:

"far data" A global variable in the far data model.

"near data" A global variable in the small data model with a4.

"near data (a6)" A global variable in the small data model with a6.

"stack" A local variable or a function parameter on the stack.

"D0" to "D7", "A0" to
"A6", "FP0" to "FP7"

A variable in the relevant data, address or FPU register.
174 StormC - the professional choice

Current variable window
◆

The values of these variables are displayed in the convenient
C syntax. Many values can be interpreted differently so they
will be displayed in more than one kind:

Integers are displayed decimal and hexadecimal. Signed
types ("LONG", "BYTE" …) are displayed decimal with sign
and hexadecimal without it. "UBYTE" and "BYTE" (also
"unsigned char" and "char") are interpreted as ANSI
characters when there is no control character.

Floating points are only displayed in decimal. When they
should be showed binary the hex editor must be used.

Counted types are displayed by their value and the name of
the constant.

Pointers are displayed hexadecimal. The address is followed
by an arrow "->" and the value at which the pointer shows.
If the pointer shows to "UBYTE" or "BYTE" it will be
interpreted as a pointer to a string and the first 40 characters
will be displayed additionally.

Structures and arrays are displayed with parenthesis and the
included elements. To limit the length of a value of a struct
or array the numbers are viewed decimal, pointers only with
the hexadecimal address and nested structures and arrays
only with the parenthesis "{…}". Inspection allows a closer
look at the values of these elements.

HelpIn the first line at the top short help texts will show the
meaning of the icons.

Shows all variables and parameters of the current function
and also the global variables of the module of this function.

Shows the global variables of all modules. Variables which
are only defined "extern" are not displayed

Shows all watched variables.

This list can contain any variable or elements of an
inspection. However the value of them is not always valid,
e.g. register variables are only valid in certain areas of the
function and variables which are on the stack are only valid
as long as the program is in this function.
StormC User Manual 175

7 THE DEBUGGER
◆

Shows the definition of the selected variables in the source
code. The source code will be loaded and the cursor is
positioned on the variable definition.

Displays the member function of the selected variables in a
new window. In C++ only variables with a struct or class type
can have member functions.

Inspects the selected variable. Therefor the current list of the
variable (which can be an inspection itself) is replaced by a
list of the elements of the variable.

If the variable has a struct, union or class type all members
are displayed. If it has an array type the single fields of the
array are showed. If it has a pointer type the type of this
pointer is shown.

At a nested inspection the previously set inspection is
displayed newly. Otherwise the variables that were shown
before the inspection are displayed (current, global or
viewed ones).

Opens the hex editor and positions the cursor on the address
of the selected variable.

Puts the variable to the list of watched variables.

Deletes the variables from the list of watched variables.

Cast Allows changing the type of a variable. The original type will
still be shown in the type list of the window, the value
however will be shown according to the new type.

By clearing the string gadget you can set it back to the
original type.

The type entered must match the way the debugger writes
them. Only simple types in Amiga specific form ("BYTE",
"LONG", "DOUBLE"), pointers to these types ("BYTE *", "LONG
*" etc.) and all types that are defined anywhere in the
module are allowed.

Value Numeric types allow direct modification without having to
resort to the hex editor. The input can be decimal, octal or
hexadecimal in the usual C syntax.
176 StormC - the professional choice

The module window
◆

Strings can be changed too. That means a memory area on
which a pointer on UBYTE or BYTE shows can be filled with
a new string. It cannot be checked if the new string is too
long, that means that the memory behind the reserved
buffer of the old string will be overwritten (!).

The module window
The module window lists all the modules in the program.
This window can be opened anytime using the menu item
"Modules" in the "Windows" menu. By double clicking a
module name in this list the source code for this module will
be shown.

Modules without a debug file will not be displayed in the
normal text colour (black) but in the selection colour (blue).

Loads the module source code into the editor.

Displays all functions of the module in a new window.
Member functions are displayed with their qualified name,
that means the name of the struct or class to which the
function belongs will be displayed with two leading colons
before the function name (e.g. "String::left").

SortingAt the beginning the modules are displayed unsorted, that
means they are in the order they appear in the project. With
this option they can be sorted alphabetically.
StormC User Manual 177

7 THE DEBUGGER
◆

The function window
The function window is similar to the module window, but
instead shows the functions in a module or the member
function of a C++ class.

similarly a double click in this window will show the source
code, only now the cursor is positioned at the start of the
function. This is a comfortable way of setting breakpoints on
functions.

The history window
The last actions of a program are recorded in the history
window. So you can have a look at the course of your
program in the source, e.g. when an unexpected behaviour
appears and you do not know why.

The history window can also be opened by the item
"History..." in the "Windows" menu.
178 StormC - the professional choice

The breakpoint window
◆

A double click on an entry will display the source code in the
editor.

Displays the source in the editor.

Deletes all entries of the history. This should be done before
watching a critical situation.

EntriesThis sets the maximum number of entries in the history. The
value must be between 10 and 256.

The breakpoint window
All set breakpoints are displayed in this window. The
window can also be opened by the time "Breakpoints…"
in the "Windows" menu.

A double click will display the breakpoint sin the editor.

Displays the breakpoints in the editor.

Toggles breakpoints on or off.

Deletes a breakpoint.

Deletes all breakpoints.

SortingNormally all breakpoints are displayed in order they were
set. The sorting can be switched to alphabetical, where the
first criterion is the module name and the second is the line
number of the breakpoint.

Pay attention on breakpoints that are in program parts that
are used by different tasks simultaneous, e.g. a dispatcher of
a BOOPSI gadget. Such a dispatcher is used by the program
and by the task "input.devide" (if the gadget is part of an
StormC User Manual 179

7 THE DEBUGGER
◆

open window). A breakpoint in the dispatcher could lead to
an exception in the "input.device" and so cause a system
crash.

The address requester
In the "Debugger" menu you can open an address requester
using "Find address". This shows the current addresses in
the program in two forms and allows you to enter a new
address in one of the two forms and find its position in the
source code.

Address This string gadget contains the address in its usual form.

Hunk This string gadget contains the hunk of the program where
the address resides.

Offset This string gadget contains the offset relative to the hunk of
the program where the address resides.

Search Finds the source code position for the entered address, for
example the hunk/offset pair.

Cancel Closes the requester.

Every program on the Amiga consists of at least on hunk
with number 0. Further hunks have increasing numbers.
Every address that lies within a program corresponds exactly
to a hunk and an offset, likewise every hunk/offset pair
corresponds to an address, when you’re searching one in a
program.

Many debugging-related programs use this form, since
contrary to a physical address, the form hunk/offset is the
same for every start of a program, whereas physical addresses
may change each time.

As soon as you change any of the three values, an attempt is
made to re-compute the other form. When you’re looking
for a particular hunk/offset pair (for example after your
program caused an enforcer hit), this is an easy way to find
180 StormC - the professional choice

The hex editor
◆

the physical address and subsequently the source code
position using "Search".

The hex editor
The hex editor shows an area of memory in hexadecimal and
as ASCII characters. The display can be byte, word or long
word based.

Choosing the display
This pop-up allows you to choose how to display the
hexadecimal values. Byte, word and long word can be
selected.

The address string gadget
This string gadget shows the current address under the
cursor or allows you to set a new address.

The address column
In this column the address of the first byte of each line will
be shown. These addresses can be changed directly as well,
no need to switch to the address string gadget.

The hexadecimal column
This column displays the hexadecimal value the memory
locations. If the address points to an illegal memory area
then only minus characters are displayed and every
modification is suppressed. The memory locations are not
read to avoid enforcer-hits.

The ASCII column
This column displays the ANSI-character for the memory
locations. If the value is outside the range of displayable
ANSI characters a dot is shown, likewise for illegal memory
addresses.
StormC User Manual 181

7 THE DEBUGGER
◆

Keyboard control
The four cursor keys move the cursor within a column.

The <Tab> key switches to the next column.

In the address and hexadecimal columns the keys ‘0’ to ‘9’
and ‘a’ to ‘f’ (and these also with <Shift>, i.e. ‘A’ to ‘F’) are
allowed.

In the ASCII column every character that is displayable one
way or the other is of course allowed.

The scrollbar in the hex editor
To allow for comfortable operation of the scrollbar the total
area covered by it is constrained to 8 Kbytes. However, if you
move the mouse over the top or bottom border of the hex
editor display the current address will be moved 4 Kbytes up
or down, respectively. This allows you to also examine larger
areas using the scrollbar.

For really big changes to the address it is always better to
directly enter the address, because of the large address space
of the CPU.
182 StormC - the professional choice

StormLink
8 ◆
8 The Linker

n a compiler system one rarely works with just a single source text. Splitting
up a project in multiple parts becomes unavoidable after some time, be it to
facilitate maintenance or because there is more than one programmer

involved. An additional reason for dividing a project into several source files is higher
compilation speed; recompilation after changing a single source file is faster as the other
sources need not be processed again.

After compiling a multi-part project the linker is called upon, first, to combine the parts
into a single program and second, to glue in the function libraries that high-level
languages, particularly C and C++, tend to rely upon.

Two kinds of libraries exist in the Amiga system: Shared libraries, which are loaded at
run-time and can be used by more than one program at the same time, and link libraries
such as the standard ANSI library and the C++ class library which are attached (linked)
directly to the program.

THE LINKER, THE UNKNOWN CREATURE ... 185

A first example ... 185
ANSI-C Hello World .. 185

Startup Code ... 186

Usage .. 189

Parameters ... 189

Memory classes ... 191

Compatibility .. 200

Error Messages ... 200

Error Messages ... 201
Unknown symbol type .. 201
16-bit Data reloc out of range ... 201
8-bit data reloc out of range .. 201
Hunk type not Code/Data/BSS ... 201
16-bit code reloc out of range .. 201
8-bit code reloc out of range .. 201
Offset to data object is not 16-bit .. 201
Offset to code object is not 16-bit .. 202
Offset to data object is not 8-bit .. 202
Offset to code object is not 8-bit .. 202

I

StormC User Manual 183

8 THE LINKER
◆

Data- access to code ...202
Code- access to data ...202
InitModules() not used, but not empty ...202
CleanupModules() not used, but not empty ..203
File not found ..203
Unknown number format ...203
Symbol is not defined in this file ...203
Nothing loaded, thus no linking ...203
Can not write file ..203
Program is already linked ...204
Overlays not supported ...204
Hunk is unknown ..204
Program does not contain any code ...204
Symbol not defined ...204
Symbol renamed to _stub ...204
_stub is undefined ...205
32-Bit Reference for Symbol ..205
32-bit Reloc to Data ...205
32-bit Reloc to BSS ..205
32-bit Reloc to Code ...205
32 Bit Reference for symbol from FROMFILE to TOFILE205
Jump chain across hunk > 32 KByte not possible ..205
More than 32 KByte merged hunks ...205
Illegal access to Linker-defined Symbol ...205
Fatal errors : aborting ..206
Hunk_lib inside Library ...206
Hunk_Lib not found ..206
Wrong type in Library ...206

Predefined values ..206
Symbols for data-data relocation ...208
Hunk Layout ...208
Memory Classes ..208

Order of Searching for Symbols ..209

Hunk Order ...209

Near Code / Near Data ..209
184 StormC - the professional choice

A first example
◆

THE LINKER,
THE UNKNOWN CREATURE

The StormC package comes with an integrated linker called
StormLink. This subprogram does a lot more than merely
combine program and library modules, as will be explained
below.

It is common practice in high-level languages to divide even
relatively small projects over several modules. As mentioned
in the introduction large benefits are to be had here; reduced
compiler turnaround times and more manageable source
files are only two examples.

Frequently-used routines may be combined into libraries
and reused at will. These libraries may grow quite large,
however the linker will only glue in the functions that are
actually used, enabling wide standardisation and reuse of
finished code without the need for translating it anew each
time it is used.

A first example
Should you be unfamiliar with these concepts, allow me to
explain them with an example. We shall use our well-known
example program in ANSI-C:

ANSI-C Hello World
#include <stdio.h>
int main(void)
{
printf("Hello World\n");
return 0;
}

The text output function used here is called printf(). Now
if you create a project ANSIWORLD.¶, and add only a file
containing this little program (let’s call it ANSIWORLD.C), you
may compile and run it in the familiar way. The program will
print "Hello World"; yet the printf() function has not
been defined anywhere in your code.

So, where does this function come from and what does its
code look like?
StormC User Manual 185

8 THE LINKER
◆

Actually the programmer need not concern himself with
that. The function "printf()", with many others, belongs
to the standard ANSI library that we have already
programmed for you and included in the compiler system.

In most compiler systems, each program must eventually be
run through a linker, which finds and includes any routines
that the programmer may have used, to produce a working
executable. How this is done internally isn’t normally of any
interest. What matters is how to make your wishes known to
the linker, and how to configure the linking process to your
needs.

Startup Code
Some internal tasks that need to be performed by any
program upon startup, and some cleanup work when
exiting, are handled for you by startup code that is included
automatically by the linker. StormC comes with two
varieties of this module called "startup.o" and "library–
_startup.o" (both can be found in the "StormC:–
StormSys" drawer).

You will only need the "library_startup.o" startup code
when programming shared libraries; it contains certain
tables and other data structures necessary for initialising
shared libraries such as the "_SysBase" variable, which the
"LibInit()" function uses to keep the "exec.library"
base pointer in. This module is used when "Link as Shared
Library" and "StormC Startup Code" have been selected
in the "Linker 1" page of the Linker Settings window.

The normal startup code is more interesting. It in turn comes
in three flavours: One for the "large" data model, and two for
the "small" data model (relative to a4 and to a6, respectively).
However the linker will select the appropriate one of these
three automatically.

All versions of the startup code detect whether your program
is started from the CLI or from Workbench, and act
accordingly. In the former case, the startup code first calls
"InitModules()", then the function labeled "main_" (this
is the parameterless version of "main" in C++) and finally
"CleanupModules()".

In the later case, it first receives the Workbench startup
message, then calls "InitModules()", and next the
186 StormC - the professional choice

Startup Code
◆

function labeled "wbmain_P09WBStartup" (this is the
version corresponding to "wbmain(struct WBStartup*)"
in C++); finally it calls "CleanupModules()" and replies the
Workbench startup message.

In order to support ANSI C, the "storm.lib" library
contains standard functions that redirect the calls to "main":

The standard "main_" function parses the CLI command-
line arguments and stores them in an array which is then
passed on to a function labeled "main__iPPc", which is the
C++ function "main(int, char **)". If no such function
exists, the ANSI-C "main()" function is called. This function
at least must be defined; otherwise the linker will emit an
error.

The standard function "wbmain_P09WBStartup" simply
calls "_wbmain", which is the ANSI-C function
"wbmain(struct WBStartup *)". Should there be no
definition of this function, the program exits. As a result,
starting a CLI-only program from the Workbench will exit
quietly instead of causing a system crash.

These functions are all defined in the "storm.lib" library
and may be overloaded if desired, for instance to make
"wbmain()" print an error message if the program cannot be
run from the Workbench.

The startup code module defines the following symbols:

_exitThe ANSI-C "exit()" function. This will call
"CleanupModules()" and subsequently exits the program
correctly.

abort__STANDARDThe "abort()" function used if no alternative has been
configured using the "signal()" function. It exits the
program without calling "CleanupModules()". Exiting a
program in this way makes little sense as libraries will not be
closed and other resources, eg. allocated memory, will not be
freed. The use of "exit()" is preferred.

_SysBaseThis is where the "exec.library" base pointer is stored. It
contains the same value found at the absolute address "$4",
but is used to reduce the number of accesses to that memory
area.
StormC User Manual 187

8 THE LINKER
◆

Should you plan to write your own startup code, please take
care to define these symbols if you want to use the
"storm.lib" link library. The compiler itself expects certain
functions in this library, for example those that perform 64-
bit integer arithmetic, to be defined so you need to link with
"storm.lib" if you intend to use that. However these
functions do not depend on any of the above-mentioned
symbols.

The small-data model versions will additionally copy the
program’s static data area to dynamic memory if the
program is linked with the options "Residentable
Program" and "Write Reloc-table For Data To Data"
enabled. This will make the program residentable and
(usually) re-entrant, so that it can be loaded into memory
with the "resident" CLI command and run several times
concurrently.

In addition to the possibility of defining your own startup
code, you may also opt to use no startup code at all. If you
choose to do this, you should include as a first source file in
the project a small file containing only a minimal function
that simply calls the real entry point of the program.

Example:

void pre_main(int, char *);

void my_startup(register __d0 int cmdlinelen,
register __a0 char *cmdline)

{
pre_main(cmdlinelen,cmdline);

}

The first source file in the project should contain no more
than this.

The necessity for this really quite pointless function is that
the order in which functions are defined in the object file
need not match the order in which the source file defines
them, and the executable file may put them in yet another
order.

The only guarantee that StormC makes here is that the first
file in a project will be the first one to be passed to the linker
(provided of course that you link without startup code)
188 StormC - the professional choice

Usage
◆

which will use the first code hunk in this file as the entry
point of the executable.

Larger source files than the one shown above, with multiple
functions and perhaps global variables (whether static or
not) and include files could have the code for the functions
in a different order than you may expect, eg. the "INIT_"
and "EXIT_" functions for global variables in C++ are often
put at the start of the object file. But even in ANSI-C the
compiler will sometimes generate such "INIT_" functions,
e.g. to initialise complex data structures.

Usage
The user normally doesn not see the linker, as it is called by
StormC’s integrated development environment. Started
from CLI, StormLink will evaluate its command line and, if
it contains only a single parameter "AREXX", attempt to
establish an ARexx message channel to a port called
"STORMSHELL".

Parameters
StormLink supports the following command-line options:

TOSelects the output file name.

UsageTO "filename"

DescriptionStormLink does not check if a file of the same name already
exists; if it does, it will be overwritten without asking. If more
than one output file has been selected, the last one will be
used.

MAP
Usage

MAP

DescriptionThis option causes StormLink to create a file called a "linker
map" containing all symbols in the created program and
their place within the executable. Here is an extract from
such a linker map:

_cout = $ 24 in hunk 1 <stormc:lib/storm.lib> (Far Public)
_std__out = $ 32 in hunk 1 <stormc:lib/storm.lib> (Far Public)
_std__in = $ 16 in hunk 1 <stormc:lib/storm.lib> (Far Public)

_cin = $ 8 in hunk 1 <stormc:lib/storm.lib> (Far Public)
_clog = $ 40 in hunk 1 <stormc:lib/storm.lib> (Far Public)

_std__err = $ 4E in hunk 1 <stormc:lib/storm.lib> (Far Public)
_cerr = $ 40 in hunk 1 <stormc:lib/storm.lib> (Far Public)
StormC User Manual 189

8 THE LINKER
◆

The first entry in every line contains the name of a symbol,
followed by its offset in hexadecimal notation, and the
number of the hunk in which it is defined; next, the name
of the object file that the symbol originates from and finally
its memory class.

LIB Selects the linker’s search path.

Usage LIB | LIBRARY

Description Any object files specified after this option are opened under
the names used on the command line; if they are not found,
the linker looks for them in the "StormC:LIB" directory
(this may be changed with the LIBPATH option). Failing this,
it will see if that directory contains a file of the same library
name but with ".lib" appended. Failing this, an error is
reported.

LIBPATH
Usage LIBPATH

Description With this option you may configure where StormC looks for
its library files. The default is "StormC:LIB".

CHIP Sets the memory class for the finished program.

Usage CHIP

Description Forces the entire program to be loaded into Chip memory.

FAST
Usage FAST

Description Forces the entire program to be loaded into Fast memory;
this is the opposite to CHIP.

CAUTION! Attempting to run a program linked with the FAST option on
an Amiga that has no Fast memory will result in an
AmigaDOS error 103 (out of memory).
190 StormC - the professional choice

Memory classes
◆

Memory classes
The Amiga architecture defines two types of RAM, to wit
Chip and Fast memory. This distinction is made for reasons
of efficiency.

Any data to be processed by the Amiga’s custom chipset, eg.
sound samples or sprite bitmaps must reside in Chip
memory. This memory is shared between the processor and
the chipset which accesses it continually, resulting in a
significant slowdown for CPU access.

Depending on screen mode and DMA activity by e.g. the
blitter, the processor may be restricted to use only as little as
one fourth of the total bandwidth of this part of memory.
For this reason most Amiga models come with additional so-
called Fast-RAM, which is reserved for use by the CPU and
which therefore sustains much higher access speeds. In
addition it is usually run at a higher clock speed than Chip-
RAM, increasing bandwidth even further. Program code
should therefore preferably be loaded into Fast-RAM, if
available; Chip memory should only be used when strictly
necessary.

Fortunately the Amiga OS allows the programmer to specify
what type of memory each program section (Glossary-
>Hunk) requires. This makes it possible to load a program
into Chip memory specifically, should this become
necessary. Usually however only small parts of the program
need to reside in Chip-RAM. They can be compiled/
assembled separately, or StormLink may be instructed to add
the necessary directives to these parts of the program should
they be missing in the object file. Note that StormLink
cannot do this as selectively as the programmer could, using
the "#pragma chip" directive. The following options can be
used to make StormLink force all data, code or BSS sections
into Chip or Fast memory respectively.

Please keep in mind that program code in Chip-RAM will run
at no more than one-fourth the speed it would have in Fast-
RAM.
StormC User Manual 191

8 THE LINKER
◆

CHIP Enables CHIPCODE, CHIPDATA and CHIPBSS.

Usage CHIPCODE CHIPDATA CHIPBSS

Description These force the OS to load the indicated program sections
into Chip-RAM.

For example, CHIPDATA may be needed when some
graphical objects fail to appear on the screen. This option is
to be used with caution as it causes all data to be loaded into
Chip-RAM.

FAST Enables FASTCODE, FASTDATA and FASTBSS.

Usage FASTCODE FASTDATA FASTBSS

Description These options are really only provided for sake of
completeness, as using them forces the specified sections
into Fast-RAM and the resulting program cannot be run if
none is available. They may be useful in some cases though,
as the OS will attempt to flush unused libraries from memory
if necessary to free up Fast-RAM, rather than simply load the
program into Chip-RAM. These options were included for no
other reason.

ADDSYM Create symbol hunks (HUNK_SYMBOL data)

Usage ADDSYM

Description This option copies symbol information from the object file
into the output file, so that labels seen in a debugger will
have meaningful names. StormLink also includes global
symbols, so in some cases the name for a particular address
may be included twice.

DEBUG
Usage DEBUG

Description Generates a ".LINK" file needed by the StormC system to run the
program through the debugger.
192 StormC - the professional choice

Memory classes
◆

ROMCODE
Usage

ROMCODE CodeStart DataStart BssStart

DescriptionFor those who want to create EPROMs; use this option only if you
really know what you’re doing.

The output file will contain only the raw code and data
hunks. The BSS hunk must be allocated manually at the
appropriate absolute address using the "AllocAbs()"
function. Code and data hunks are relocated to the specified
addresses at compile time, so there is no AmigaDOS
relocation table overhead. After the indicated number of
bytes of code, only the data section follows.

Caution!If your program addresses data relative to an address register,
the BSS hunk is again assumed to be directly behind the data
hunk. The BSS thus starts at Address of Data + Length of
Data. The SmallCode, SmallData and SmallBSS are set
automatically, so there is no fragmentation. Using the
WARNREL option and corresponding startup code you may
produce completely PC-relative code here.

BASELinker database offset

UsageBASE number

DescriptionSets the linker database’s offset value within the program to
First Data Object + number. Should your program contain
too much data, resulting in a "16-Bit Reference/Reloc Out of
Range" error from the linker, setting BASE to 0x8000 may
help you out. If this doesn’t work, you will need to switch to
32-bit addressing.

ONEHUNKGenerates CODE hunk only

UsageONEHUNK

DescriptionProduces a single CODE hunk containing all Code, Data and
BSS sections. This could be useful for games programmers.

Any relocation routine now only needs to deal with one
hunk. If the program is compiled with the Small Data model,
this allows completely PC-relative programming in a high-
level language. The data base register (normally a4) is now
initialised with

lea _LinkerDB(PC),a4
StormC User Manual 193

8 THE LINKER
◆

If all other addressing is done using d16(pc) or d16(a4), the
program will be entirely free of absolute addresses.

Such programs are fast in loading, but are normally non re-
entrant. Combining this option with ROMCODE yields a
program that can be loaded into some (SPECIFIC) absolute
address using Read(File, Buffer, len), and run directly.
This technique requires that the program contains no
absolute addresses whatsoever, meaning that the WARNREL
option must be enabled if you want to apply it.

VERBOSE Enables the multiple-definition check.

Usage VERBOSE

Description If VERBOSE is enabled, StormLink shows the names of any
files loaded and scans them for multiply-defined symbols.
Should one be found, it will print the names of the object
files that define it.

The check also applies to libraries, as names can be used
more than once there but with different meanings.

Perhaps the best example of this is the C printf() function:
The "MATH.LIB" library defines a second version of this
function, which is capable of printing floating-point
numbers. The VERBOSE option is disabled for filenames
following the LIB keyword, so that the program may still
overload library symbols.

SMALLCODE, SMALLDATA, SMALLBSS

These options are superfluous under normal circumstances,
as StormLink can independently decide what to do with a
hunk. In some cases however this may not be what you
intended, which is why these options allow you to influence
how the linker combines the hunks.

These options take priority over and disable their respective
MAXCODE, MAXDATA and MAXBSS counterparts.
194 StormC - the professional choice

Memory classes
◆

SMALLCODEForces creation of only a single Code section.

SMALLDATA
SMALLBSS
DescriptionSpecifying any of these options causes only a single hunk of

the corresponding type to be generated. It will obey the
strictest of the memory-class constraints for that hunk type.

See alsoMemory classes

MAXCODE
MAXDATA
MAXBSS
UsageMAXCODE number

MAXDATA number
MAXBSS number

DescriptionStormLink normally merges all hunks of the same type, e.g.
all NEAR hunks, all PUBLIC-CODE hunks, and so on, into one
hunk for each type.

Using these options you may fragment the program, i.e.
create several smaller hunks of the same type. StormLink will
merge as many hunks as will fit into the size specified.

Specifying MAXCODE 1 will prevent any CODE hunks to be
merged, so each one will appear as a separate hunk in the
executable. Hunks marked MERGED are an exception; these
will all be merged into a single hunk regardless.

RESIDENT
UsageRES | RESIDENT

DescriptionA program that is to be kept resident in memory makes some
special requirements of the run-time system. Global
variables must be kept for each instantiation separately so no
other invocation of the same resident program can reach or
alter them.

A residentable program is essentially a program with the
small data model that creates a new copy of its entire data
section on each invocation and uses the copy exclusively.
Above all it is vital that the program reference no absolute
addresses. These would point to the original data section and
StormC User Manual 195

8 THE LINKER
◆

cannot be redirected to the copy. With the RESIDENT
enabled a warning is emitted for such cases.

WARNREL Warn of 32-bit relocations.

Usage WARNREL

Description Causes StormLink to emit a warning if the program contains
32-bit Relocs. This option is not to be confused with
RESIDENT.

Use this option when creating position-independent code.
In that case one should use the ONEHUNK option as well.

OPTIMIZE
Usage OPTIMIZE

Description When OPTIMIZE is enabled, StormLink makes an
optimization pass over the object code. If a 32-bit reference
to an object within the same hunk is found, StormLink will
attempt to replace it by a PC-relative reference saving 4 bytes
by freeing up a reloc entry.

This optimisation may result in incorrect code however. The
optimiser contains a tiny "disassembler" that recognises only
the JSR, PEA and LEA instructions. It cannot distinguish
between code and any data that may be interspersed with it.

The optimiser is only called for global references, ie. when
references are bound across object modules. Performing
these optimisations for relocation entries is left to the
assembler and the compiler.

NEARCODE
Description StormLink assumes that all symbols needed for

CleanupModules or InitModules can be reached by a single
short jump. This may lead to problems with very large
hunks, as this type of jump cannot cover a distance of more
than 32 Kb.

OOP
Usage OOP

Description Generates the auto-init and auto-exit routines needed by a
C++ compiler. When enabled, StormLink assembles a
routine labeled "_InitModules" and one labeled
196 StormC - the professional choice

Memory classes
◆

"_CleanupModules", which call the required "_INIT_x_"
and "_EXIT_x_" routines.

Here "x" is a number between 0 and 9. In this case, and only
in this one, the use of multiple symbols with the same name
is allowed. If the routines are non-empty, yet never called, a
warning is emitted.

The "_InitModules" routine calls the "_INIT_0_" routines
first, and the "_INIT_9_" routines last. The order is reversed
in "_CleanupModules". The entries are sorted by number,
where single-digit numbers are multiplied by 100 and two-
digit numbers by 10. Thus "_INIT_1_" is called before
"_INIT_31_", ensuring compatibility with the three-digit
priority numbers in the SAS/C compiler.

LOG
UsageLOG "filename"

DescriptionWhenever a symbol is referenced that StormLink can’t find,
an ERROR 25 message is generated. Before this happens,
however, it tries to find out which file it could load to find
the symbol anyway.

The LOG option loads a log file, which contains information
about object files and the symbols defined in them. It looks
like this:

<filename> <= This is the name of the object file
 <symbol> <= Symbols
 <symbol>
 The filenames start at the first column, whereas symbols are
recognised by leading whitespace.

DDREL
UsageDDREL

DescriptionThe abbreviation means Data-Data Relocation. If there are
any fixed 32-bit relocations from Data to Data/BSS, this
option instructs StormLink to set up an internal relocation
table for the program so that the startup code can work out
the relocations for its own copy of the Data/BSS hunks. This
option is useful only in conjunction with RESIDENT.
StormC User Manual 197

8 THE LINKER
◆

FORCELINK
Usage FORCELINK

Description This option forces StormLink to include all Data and BSS
hunks from all object files included in the command line.

Unused hunks from libraries are still stripped from the
output file. Using this option may become necessary if your
program contains global classes with constructors that
perform useful work although the objects of those classes are
never used in the program. StormLink would attempt to
discard these objects as unused, which may not be what you
intended.

MODEL
Usage MODEL [FAR - NEAR - NEAR_A6]

Description To simplify library handling, StormLink allows you to ignore
certain parts of a library.

When, for instance, the MODEL option is used with the FAR
argument all parts compiled with the NEAR or NEAR_A6
options are omitted. As a result a library may contain
multiple versions of each of its symbols, obviating the need
for a plethora of different versions of each library. With this
option the linker can be instructed to simply select the
desired version of each function.

FOLDCODE
Usage FOLDCODE

Description StormLink is able to perform several optimisations on the
final executable similar to those performed by a compiler.
One of these is detection and removal of duplicated code,
which is enabled by this option.

When StormLink finds two identical routines, where one
could be replaced by the other without affecting the result,
the second routine is removed and replaced by the first one.

The use of this option may not seem apparent; after all you
know what is in your program and wouldn’t define identical
functions. The answer is in C++ template instantiations. An
executable may contain many identical instantiations of a
function template or class template member function
198 StormC - the professional choice

Memory classes
◆

resulting in potentially enormous code bloat and
deteriorated cache performance.

As this optimisation may take some time to perform its use
is only recommended when compiling at optimisation level
9, and you have either a fast machine or enough time to
spare.

VERSION
UsageVERSION "number"

DescriptionSets the global constant _ _VERSION to the numerical value
of "number".

REVISION
UsageREVISION "number"

DescriptionSets the global constant _ _REVISION to the numerical
value of "number".

ARexx StormLink has an ARexx port called STORMLINK.
Although full documentation of this port and its commands
could be of interest to some users, it is too large for the scope
of this manual section.

This port is not intended for use from Rexx. Suffice it to say
that StormLink, when called from the CLI without
arguments goes into ARexx mode. Four commands are
supported, each of which may however give rise to a flood
of communications with StormC’s IDE.

CD
UsageCD "name"

DescriptionSets StormLink’s working directory to the directory named
by the argument.

LINK
UsageLINK files.o Options...

DescriptionInitiates the linking stage with the specified options and
object files.

BREAK
UsageBREAK
StormC User Manual 199

8 THE LINKER
◆

Description Interrupts an ongoing linking stage, if possible.

QUIT
Usage QUIT

Description Remove StormLink from memory

Compatibility
StormLink is highly compatible with BLink and with SLink
from the SAS/C package. StormLink supports both the SAS/
C library format as the SAS/C constructor and destructor
features. Combined use with StormC poses no problems, so
you may use them together.

Error Messages
One design goal for StormLink was proper behaviour under
error conditions. All error messages consist of several parts:
First comes either the word "Warning" or the word "Error",
followed by the number of the error message. Then comes a
brief explanation with some parameters similar in
appearance to a command line. This enables you to quickly
find the necessary information.

The following message parameters may occur:

TYPE This keyword is followed by the type of the hunk in which
the error occurred, ie. "Code", "Data" or "BSS".

FILE Indicates the object file in which the error occurs.

FROMFILE
TOFILE As the job of the linker is to combine object files, some errors

are caused by more than one file. In such cases the FROMFILE
keyword indicates the file containing the problematic
reference and TOFILE shows the object file it points to.

SYMBOL Shows the name of the symbol involved in the error.

OFFSET Shows the file offset at which the problem occurred.

PREFILE This parameter is printed only in the case of a multiply
defined symbol; it shows the name of the file containing its
first definition.
200 StormC - the professional choice

Error Messages
◆

HUNKTYPEFollowed by a number, this parameter indicates an invalid
object file.

Most of these errors are not fatal and will not cause the
linking stage to be aborted. They are, however, of
importance with regard to the produced executable as they
indicate that something has gone wrong at the place
indicated in the error message.

Running such an executable will most likely result in a
system crash ! If you are certain that the symbol involved is
never used then doing so is nevertheless still possible, e.g. in
the debugger.

Error Messages
Unknown symbol type

Error 0.This is a symptom of an incorrect object file; it contains a
symbol with a type designator that StormLink doesn’t know.

16-bit Data reloc out of range
Error 1.This error can occur when SmallData hunks get too large. If

BASE is already set to its maximum (0x8000) then you have
a problem. The program contains too many data for the
small data model.

8-bit data reloc out of range
Error 2.See error 1; this error has the same cause but should be more

rare.

Hunk type not Code/Data/BSS
Error 3.This object file is corrupted, if it is an object file at all.

16-bit code reloc out of range
Error 4.Similar to error 1, but for code rather than for data.

StormLink encountered a 16-bit reference spanning too long
a distance.

8-bit code reloc out of range
Error 5.See above.

Offset to data object is not 16-bit
Error 6.The distance to an imported data object is too large.

See error 1.
StormC User Manual 201

8 THE LINKER
◆

Offset to code object is not 16-bit
Error 7. This error should never occur. If such a situation occurs,

StormLink will build a chain of short jumps to span the same
distance. Only if even the jump out of the hunk is too long
can this still be a problem.

Offset to data object is not 8-bit
Error 8. This error is analogous to error 6 with the difference that the

maximum allowed distance is limited to only 8 bits.

Solution Find the corresponding symbol in the map file and set the
BASE value manually (between -127 and +127). If errors of
this kind still occur, getting the program to link is next to
impossible. The only solution is to change the source code
causing the problem.

Offset to code object is not 8-bit
Error 9. The usual cause for this error are object files created by an

assembler that contain a directive of the form "bsr.s
_external_name". This error should not occur with object
files created by StormC, as it doesn’t (and mustn’t) use such
constructs. The indicated object file apparently contains a
reference to a code object that cannot be resolved.

Solution Rewrite the source code causing the problem.

Data- access to code
Error 10. Object files can state whether a reference should point to a

data object or into the code area. If StormLink discovers a
violation of this restriction, it rings the alarm. This error is
caused by such constructs as "extern long printf;
printf=0;", which is absolutely fatal to the program! The
VERBOSE option enables this warning.

Code- access to data
Error 11. This error is currently disabled as it would give false alarms

continually. I have yet to find an assembler that can generate
the necessary data references and does not use the same type
of reference for code and data all the time.

InitModules() not used, but not empty
Error 12. All modules that need any kind of initialisation export a so-

called constructor, and a destructor for cleaning up
afterwards.
202 StormC - the professional choice

Error Messages
◆

StormLink automatically generates code to call these
routines. The program first calls the InitModules routine,
usually from the "STARTUP.O" startup code, which in turn
calls all the constructors. If this is not done, ie. if the routine
is never called yet does contain code, the program cannot be
correct unless it would call all INIT_xx and EXIT_xx routines
by itself.

Seeing that the linker knows best just what is in the list of
necessary routines and what isn’t, you shouldn’t even try to
do this by hand. In strict accordance to Murphy’s Law, one
will always be forgotten.

CleanupModules() not used, but not empty
Error 13.See error 12.

File not found
Error 14.The problem is obvious: StormLink can’t find any file with

the name you specify.

Unknown number format
Error 15.StormLink has its own parser to recognise and process

different numeric notations such as decimal, octal and
hexadecimal numbers in two different formats. This parser
is also smaller than its "STORM.LIB" equivalent.
Hexadecimal numbers may begin with either "0x" or "$".
This error message is displayed when a number contains a
character that doesn’t belong there.

Symbol is not defined in this file
Error 16.StormLink is also capable of reading index files from the

MaxonC compiler, which calls them "LOGFILE". If this file
should state that some symbol is defined in a particular
object file that hasn’t been loaded yet, but no definition for
it is found in that file, this error is displayed.

SolutionCorrect the "LOGFILE" file.

Nothing loaded, thus no linking
Error 17.The command-line arguments contain only options, and no

object files. Therefore StormLink can’t create an executable.

Can not write file
Error 19.For some reason this output file couldn’t be written to.
StormC User Manual 203

8 THE LINKER
◆

Redefinition of symbol in file FILE , first defined in file
PREFILE

Warning 20. StormLink has found a new definition for a symbol that has
already been defined. As this can lead to errors that are
difficult to track down, it is advisable to rectify this as soon
as possible.

Program is already linked
Error 21. Once a file has been linked, it no longer contains most of the

information needed by a linker to operate on it. It is almost
impossible to alter an already linked file in a meaningful
way. For this reason StormLink refuses to load such a file at
all.

Overlays not supported
Error 22. There is nothing StormLink can do with an object file that

requests an overlay. In this day and age when all computers
have megabytes of memory, overlays are no longer of any
use. Please use a shared library instead.

Hunk is unknown
Error 23. There appears to be something wrong with this object file.

The field that was expected to contain a valid hunk-type
designator contains nothing that the linker can recognise.

Program does not contain any code
Error 24. After stripping any unused parts of the program, the linker

was left with a file that contained no code at all. This
program can’t do anything.

Symbol not defined
Error 25. A symbol is used for which no definition can be found. It was

either misspelled or is missing from the used libraries. If the
message has a HINT parameter attached it points at the last
symbol defined before the error, which is usually the routine
that contains the unresolved reference.

Symbol renamed to _stub
Warning 27. Any references to undefined symbols are automatically

diverted to a routine called "stub()". The reason for this is
that you may sometimes want to compile large projects
before all routines have been written.
204 StormC - the professional choice

Error Messages
◆

_stub is undefined
Error 28.The "stub()" routine simply doesn’t exist.

32-Bit Reference for Symbol
Warning 29.This message is enabled by the WARNREL option. It tells you

that a 32-bit reference exists for a symbol that shouldn’t be
there because of the WARNREL option.

32-bit Reloc to Data
Warning 31.This warning is also enabled by the WARNREL option.

32-bit Reloc to BSS
Warning 32.Like warnings 29 and 31 above, this warning is enabled by

the WARNREL option.

32-bit Reloc to Code
Warning 33.Like warnings 29, 31 and 32 above this warning is enabled

by the WARNREL option.

32 Bit Reference for symbol from FROMFILE to TOFILE
Warning 34.This warning gives the filenames connected by the 32-bit

reference to this symbol. The WARNREL option tells
StormLink it should emit a warning for this case.

Jump chain across hunk > 32 KByte not possible
Error 35.A jump chain needs to hop over a hunk that is too large for

a single jump.

SolutionCompile the module that causes the problem with the
"Create Library" option.

More than 32 KByte merged hunks
Warning 36.A MERGED hunk uses 16-bit addressing, which is limited to

a range of +/- 32 Kb (32768 bytes). This could, but need not,
lead to problems.

Illegal access to Linker-defined Symbol
Error 37.StormLink defines a few symbols of its own for specific tasks.

Should any such symbol be erroneously accessed by the user
program, this error message is displayed.
StormC User Manual 205

8 THE LINKER
◆

Fatal errors : aborting
Error 38. This indicates the occurrence of such serious problems while

linking that StormLink can’t handle them anymore. Trying
to proceed under these conditions would only cause more
problems, which the linker prevents by aborting the process.
No output file is generated.

Hunk_lib inside Library ??
Error 39. A file that has already been identified as a SAS library

contains another such identifier within the library contents.
StormLink doesn’t understand this and exits.

Hunk_Lib not found
Error 40. An important part of a file that has been identified as a SAS

library is missing. This indicates a corrupted library.

Wrong type in Library
Error 41. Symbols are represented differently in SAS library than they

are in standard object files. Types simply added in the
normal way confuse StormLink.

Predefined values
StormLink defines constant symbols for the linker database
and for the length of the Data and BSS hunks. Notation is
compatible with that used by BLink 6.7, however BLink will
not show all of these symbols.

_LinkerDB
Usage _LinkerDB: (label)

Description Points to the first data element + BASE. With BASE set to 0
(this is the default) this points to the first element of the Near
Data hunk. If the SMALLDATA option is used there may well
be something before this.

_ _SmallData
Usage _ _SmallData: (label)

Description Points to the first data element + 0x8000; this is used by the
MaxonC++ compiler which assumes that BASE is always set
to its maximum (0x8000). Mixing object files that assume
different BASE settings is possible, but the produced
executable will crash inevitably.
206 StormC - the professional choice

Predefined values
◆

RESIDENT
UsageRESIDENT: (const) 1

Descriptionset when linking with RESIDENT option; 0 otherwise.

_ _VERSION
Usage_ _VERSION: (const) variable.

DescriptionThis is equal to 0 by default, but can be set with the VERSION
option.

_ _REVISION
Usage_ _REVISION: (const) variable.

DescriptionThis is equal to 0 by default, but can be set with the
REVISION option.

SmallData Symbols
Usage_ _DATALEN: (const)

DescriptionLength of the data area in longwords (one longword equals
four bytes) of the MERGED hunk.

Usage_ _BSSBAS (label)

DescriptionStart of the BSS section in the MERGED hunk.

Usage_ _BSSLEN: (const)

DescriptionLength of the BSS section of the MERGED hunk, in longwords.

Usage_ _OFFSET: (const)

DescriptionThis equals the offset defined by BASE + the amount of data
placed before the Near Data section of the Data hunk.

These values are useful when writing a pure-resident
program. It also allows the startup code to determine
whether the BSS section still needs to be initialised or
whether the program has been linked with the RESIDENT
option in which case it must set up a new MERGED hunk. For
more detailed information please read the provided source
to the startup code.
StormC User Manual 207

8 THE LINKER
◆

Symbols for data-data relocation
_DDSIZE: (const) Length of table (in bytes!)

Description Had this length been measured in longwords, the following
would no longer work.

_DDTABLE: (label)
Description Start address of table. This table is attached to the first Code

hunk. If there is only one code hunk, (_DDTABLE+_DDSIZE)
points to the end of the hunk. If no DDREL-option has been
set, _DDSIZE equals zero.

Hunk Layout
Aggressive hunk merging is pursued to make the generated
executables as small as possible.

Memory Classes
For the purpose of hunk merging, StormLink assigns a
signature to each hunk. This signature contains:

- Hunk type (Code, Data or Bss)

- Memory Class (Public, Chip or Fast)

- Addressing Mode (Near or Far)

Naturally one may also use hunks that have already been
marked with the Chip or the Fast bit. In that case, priorities
are as follows:

CHIP (maximum)

FAST

PUBLIC (minimum, regardless of memory class)

Setting the Fast bit isn’t very polite as it requires the presence
of Fast-RAM in the system. CHIP data should be declared as
Far if at all possible.

Assembler programmers should address CHIP data with 32-
bit addressing only. This allows StormLink to merge such
data into a single CHIP-DATA hunk. This way the Small Data
hunk is free to be allocated in expansion RAM. Using so
much as a single 16-bit access to a CHIP data element
208 StormC - the professional choice

Order of Searching for Symbols
◆

through the xx(ax) addressing mode will force the entire
Near Data hunk into Chip-RAM.

Order of Searching for Symbols
Symbols are looked for first in the Code section, then in the
Data section and finally in the BSS section. If any symbols are
not found, the log file is inspected to find out which object
file defines them.

Hunk Order
All hunks of the same signature are merged together as far as
any used options such as SMALLCODE or MAXDATA will allow.
As StormLink can and will reorder hunks while linking, one
should not rely on hunks appearing in the executable in the
same order as they do in the object file. The linker first writes
all Code sections, then all Data and finally the BSS sections.
However the order in which StormLink processes its
parameters is significant. It first makes a pass over the
command line to filter out the options, and then attempts
to load all other arguments as object files.

Near Code / Near Data
StormLink supports programming in the Near code model
where routines are accessed through PC-relative addressing
to reduce both execution time and program size.

Near Data consists of a hunk containing all pre-initialised
data of the program as well as all un-initialised data (BSS).
This hunk is addressed in a base-relative fashion, i.e. relative
to a base address register. These accesses also have the speed
and size advantage over 32-bit absolute addressing. Should
the Near Code hunk grow larger than 32 Kb, StormLink
constructs jump chains across single hunks to allow calls to
span distances larger than 32 kilobytes.

Please take due care when using global data contained in the
CODE section; the linker has no way of telling such data apart
from program code. It may insert intermediate jumps where
a data access was required, which could lead to bugs that are
extremely hard to find.
StormC User Manual 209

8 THE LINKER
◆

210 StormC - the professional choice

Index
◆

Symbols
##base 125

##bias 125

##end 126

##private 126

##public 126

#define 72

#pragma header 71

\ 114

__COMPMODE__ 115

__cplusplus 115

__DATE__ 115

__FILE__ 115

__FUNC__ 116

__inline 109

__LINE__ 116

__STDC__ 116

__STORM__ 116

__TIME__ 116

_LibNameString 128

_LibVersionString 128

_stub 204

_wbmain 187

A
amiga.lib 118, 156

Authors 2
auto 107

AutoSave 52

C
CleanupModules 113, 186

Compiler
CLI version 130
Options 134
Special features 107

Compiler Options
ANSI C or C++ 137
Assembler source 136
Code model 138
Colours and styles 142
Core memories 144

Data model 138
Definition of symbols 136
Error file 142
Exception handling 137
Include files 137
Linker libraries 141
Optimisations 138
Optional warnings 143
Pre-compiled header files 144
RunShell 141
Special processors 140
Summary 145
Symbolic debugger 141
Template functions 138
Treat warnings like errors 144
Warnings and errors 141

Constructors 113

Copyrights 2

D
Debug Files 76

Debugger 76
Address requester 180
Breakpoint window 179
Changing Values 161
Control Window 169
Current variable window 174
Display member function 176
Don´t inline 171
Example 157
Free Resources 156
Free resources 173
Freeze the program temporarily 153
Function window 178
General information 151
Global variables 160
Halting the program 154
Hex editor 181

Keyboard control 182
Icons 169
Inspect Variables 176
Inspection 160
Kill 172
Local variables 160
Module window 177
Pause 172
Priority 172
Protocol 172
StormC User Manual 211

INDEX
◆

Resource-Tracking 152
Sending signals 154
Signals 172
Single step 170
Sorting of Variables 161
Task priority 154
Temporary Casts 161
Variable Window 159
Watched variables 160

Destructor 113

E
Exceptions 75

EXIT_ 113, 117, 128, 189

extern 107

F
FD files 125

H
Header Files 71

Hello World 185

history window 178

Homepage 8
Hotline 8

I
INIT_ 113, 117, 127, 189

InitModules 113, 186

Inline 108

Internet 7

J
Joining Lines 114

K
Kill 154, 163

L
LibClose 126

LibExpunge 126

LibInit 126, 186

LibNull 126

LibOpen 126

library_startup.o 186

Licensee 3
Linker

_exit 187
Compatibility 200
Error Messages 200
First example 185
Hunk Layout 208
Hunk Order 209
Memory Classes 208
Memory classes 191
Near Code 209
Near Dat 209
Predefined values 206

_ _BSSBAS 207
_ _BSSLEN 207
_ _DATALEN 207
_ _OFFSET 207
_ _REVISION 207
_ _SmallData 206
_ _VERSION 207
_DDTABLE 208
_LinkerDB 206
RESIDENT 207

Startup Code 186
Linker parameters

ADDSYM 192
BASE 193
BREAK 199
CD 199
CHIP 190, 192
DDREL 197
DEBUG 192
FAST 190, 192
FOLDCODE 198
FORCELINK 198
LIB 190
LIBPATH 190
LINK 199
LOG 197
MAP 189
MAXBSS 195
MAXCODE 195
MAXDATA 195
MODEL 198
NEARCODE 196
212 StormC - the professional choice

Index
◆

ONEHUNK 193
OOP 196
OPTIMIZE 196
QUIT 200
RESIDENT 195
REVISION 199
ROMCODE 193
SMALLBSS 195
SMALLCODE 195
SMALLDATA 195
TO 189
VERBOSE 194
VERSION 199
WARNREL 196

M
main_ 186

main__iPPc 187

N
Nested Comments 73

O
Optimiser 84

Optimising 78

P
Phone 8
pragma - 110

pragma + 110

pragma amicall 111, 118, 156, 173

pragma chip 111, 191

pragma fast 111

pragma header 71

Pragma instructions 110

pragma libbase 124

pragma priority 112

pragma tagcall 111, 156, 173

Predefined symbols 115

Preface 5
Problems 7
Profiler 164

protocol list 155

Prototypes 117

R
register 107

Register parameters 108

Resource-Tracking 151

RunShell 151

S
ScreenManager 48

Settings 51

Shared Libraries
avail flush 129
FD files 125
Important hints 128
Initialisation 127
library_startup.o 128
Make your own 123
Project Settings 125
Register Setup 124
Setup 123
Using 117

Source Level Debugger 151

startup.o 186

static 107

storm.lib 113, 127, 187

StormLink 185

STORMPRAGMAS 73, 118

Stub Functions 118

Support 8

T
Technical support 7
Textoptions 95

Thanks 6
Tooltypes 47, 94

GOLDED 48
HOTHELP 48
PUBSCREEN 48
QUIET 48
SAVEMEM 48
StormC User Manual 213

INDEX
◆

W
Warnings 80

wbmain_P09WBStartup 187

WWW 8
214 StormC - the professional choice

	StormC C/C++ Development System
	Amiga is back for future.
	If you don’t like manuals
	If you are familiar with C and C++
	If you never worked with a compiler nor did any programming in C

	OVERVIEW
	Before you install
	Localization

	Installing with low memory
	Full installation
	Novice User:
	Intermediate User:
	Expert User:

	Selecting the installation directory
	Installing an update
	Removing StormC
	Custom files in the StormC drawer
	After Installation
	Troubleshooting the Installation
	Correct StormC installation

	BEFORE YOU BEGIN
	Running the program
	StormShell
	StormC
	StormLink
	StormEd
	StormRun
	StormASM

	Toolbar access
	Keyboard control
	The icon bar offers the following functions:

	THE CONCEPT OF PROJECTS
	The simple way
	An easier approach through batch files
	STORMC’S PROJECT MANAGEMENT
	Creating a new project
	What is a project?
	Make and module dependencies
	Saving the project and creating a new directory
	Adding files to the project
	Automatic Usage of Preferences
	Specifying the program’s name
	Saving the project
	Creating a source file
	Adjusting settings
	Compiling the source code
	Running the translated program
	Console output

	OVERVIEW
	Some words about the startup
	Tooltypes
	The ScreenManager

	Memory usage
	Settings
	Automatic storage
	Automatic storage of unnamed files
	Automatic backup copy
	Selecting text font

	Organisation of a Project
	Creation of a new project
	Setup of projects
	Project Sections
	Adding Files
	Adding Sources
	Add Window
	Adding Libraries
	Choosing a program name

	Drag&Drop
	Controls of the Project Window
	Folding of Sections
	Showing Sources
	Starting a Program
	Open a Child Project

	Keyboard control
	Cursor keys
	Return

	Deleting Items of a Project
	Organising files of a project
	Project specific headers
	Documentation, scripts ...

	Makescripts
	Passing arguments to makescripts
	Assembler scripts

	Saving of the paths

	Project Settings
	Paths and global settings
	Include path
	Header Files
	Working memory - Workspace

	Definitions and Warnings
	ANSI-C/C++ Settings
	Source
	Template Functions
	Exceptions
	Debugger
	Code Generation
	Processor Specific Code Generation

	Quality of the Optimisation
	Optimising

	Compiler Warnings
	Standard of the language
	Security
	Optimisation

	Path Settings and Linker Modes
	Generation of Programs
	Library Path
	Warnings
	Optimiser

	Hunk Optimisations and Memory Settings
	Summarise Hunk
	Manner of Memory
	ROM Code

	Call of the executable program
	Execute Environment
	Start From CLI
	I/O Settings
	Input/Output

	Save Project

	In General
	New text
	Controls of windows
	Open / Load Text
	Tooltypes

	Save Text / Save Text As ...
	Free Text
	Options of Text
	Tabulations and Indents
	Indent ahead and behind of brackets
	Dictionaries and Syntax
	Dictionaries
	Syntax
	Colour Settings
	File Saving Settings
	Saving the Settings

	Keyboard Navigation
	Cursor-Keys
	<Return>, <Enter>, <Tab>

	Undo / Redo
	Block Operations
	Mark, Cut, Copy and Paste

	The Mouse
	Find and Replace
	Direction
	Mode
	Ignore Upper/Lower Case
	Ignore Accent
	Find
	Replace
	Replace All

	Special features of StormC
	DATA in Registers
	Parameters in Registers
	Inline Functions
	The Pragma instructions
	Data in Chip and Fast RAM
	AmigaOS Calls
	The #pragma tagcall

	The #pragma priority
	Constructors and Destructors in ANSI C
	Constructors and Destructors in C++
	Priority list

	Joining Lines
	Predefined symbols
	Build your own INIT_ and EXIT_ routines
	Use of Shared libraries
	Prototypes
	Stub Functions
	#pragma amicall
	Forced opening of a Amiga library

	Programming of Shared Libraries
	The Setup of a Shared Library
	The #pragma Libbase
	Register Setup
	Shared Library Project Settings
	The setup of FD files
	The first four Functions
	Home-made Initialisation and Release
	Important hints to Shared libraries

	Porting from SAS/C to StormC
	Project settings
	Syntax
	Keywords

	CLI version of the compiler
	The instruction
	Options
	Assembler source
	Pre-processor: Definition of symbols
	Pre-processor: Include files

	Compiler mode
	ANSI C or C++
	Exception handling
	Creation of Template functions

	Code creation
	Data model
	Code model
	Optimisations
	Code for special processor
	Code for linker libraries

	Debugger
	RunShell
	Symbolic debugger

	Copyrights
	Warnings and errors
	Format of the error output
	Colours and styles
	Error file
	Optional warnings
	Treat warnings like errors
	Core memories
	Pre-compiled header files

	Summary

	GENERAL INFORMATION ON RUNSHELL
	The StormC Maxim
	A Resource-Tracking Example
	Freeze the program temporarily
	Halting the program
	Changing the task priority
	Sending signals

	Using the Debugger
	The Variable Window
	Temporary Casts
	Changing Values
	Sorting of Variables

	The Profiler
	Profiler technical information

	Reference
	Control Window
	Status line
	“Program Stops At Breakpoint“:
	“Continue Program“:
	“Program waits for ...“:
	Debugger icons
	Go to next breakpoint
	Step in (single step)
	Step over (single step, but execute function calls without stopping)
	Go to the end of the function.
	Show Current Program Position
	Pause
	Kill
	Priority gadgets
	Signal group
	Protocol gadgets
	Window close gadget

	Current variable window
	The module window
	The function window
	The history window
	The breakpoint window
	The address requester
	The hex editor
	Choosing the display
	The address string gadget
	The address column
	The hexadecimal column
	The ASCII column
	Keyboard control
	The scrollbar in the hex editor

	The linker, the unknown creature
	A first example
	ANSI-C Hello World

	Startup Code
	Usage
	Parameters
	Memory classes
	Compatibility
	Error Messages
	Error Messages
	Unknown symbol type
	16-bit Data reloc out of range
	8-bit data reloc out of range
	Hunk type not Code/Data/BSS
	16-bit code reloc out of range
	8-bit code reloc out of range
	Offset to data object is not 16-bit
	Offset to code object is not 16-bit
	Offset to data object is not 8-bit
	Offset to code object is not 8-bit
	Data- access to code
	Code- access to data
	InitModules() not used, but not empty
	CleanupModules() not used, but not empty
	File not found
	Unknown number format
	Symbol is not defined in this file
	Nothing loaded, thus no linking
	Can not write file
	Program is already linked
	Overlays not supported
	Hunk is unknown
	Program does not contain any code
	Symbol not defined
	Symbol renamed to _stub
	_stub is undefined
	32-Bit Reference for Symbol
	32-bit Reloc to Data
	32-bit Reloc to BSS
	32-bit Reloc to Code
	32 Bit Reference for symbol from FROMFILE to TOFILE
	Jump chain across hunk > 32 KByte not possible
	More than 32 KByte merged hunks
	Illegal access to Linker-defined Symbol
	Fatal errors : aborting
	Hunk_lib inside Library ??
	Hunk_Lib not found
	Wrong type in Library

	Predefined values
	Symbols for data-data relocation
	Hunk Layout
	Memory Classes

	Order of Searching for Symbols
	Hunk Order
	Near Code / Near Data
	Symbols
	A
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	W

